Home > Group Leaders > M to P

Sarah  Perrett, Ph.D, Prof.

Principal Investigator

National Laboratory of Biomacromolecules, IBP

Folding and Assembly of Functional Amyloids, Biological Properties of Nanomaterials, Protein Folding, Post-Translational Modification & Quality Control

E-mail: sperrett(AT)ibp.ac.cn

Tel: 86-10-64889870

Chinese personal homepage

Biography & Introduction

1992      BA in Chemistry, University of Cambridge, UK

1997      PhD in Protein Chemistry, University of Cambridge

1996-1997  Post-Doctoral Research Associate, University of Cambridge

1997-2000  College Research Fellow, University of Cambridge

1999-2000  Chinese language study, National University of Singapore

2000-2003  1851 & Royal Society Research Fellow, CAS Institute of Biophysics, Beijing

2003-present Principal Investigator, CAS Institute of Biophysics

Honours and Awards

2015   CAS Young International Scientific Collaborator Prize (with Prof. Tuomas Knowles, University of Cambridge)

2015   OBE for services to UK/China relations in the scientific field

2010   Beijing Municipal Technology Prize (1st Class, with Prof. Xiyun Yan, IBP & others)

Research Interests

1. Folding and Assembly of Functional Amyloids

We are studying the detailed mechanism of fibril assembly for functional amyloids, such as the yeast prion protein Ure2 and the bacterial Chaplin proteins, in order to understand how biological systems regulate protein folding and misfolding.

2. Protein Folding, Post-Translational Modification & Quality Control

We are studying the detailed mechanisms by which molecular chaperones control protein folding and misfolding. In particular, we are examining the role of post-translational modification of the molecular chaperone Hsp70 in regulating its structure and function.

3. Biological Properties of Nanomaterials

We are studying how the unique properties of amyloid can be exploited in the design of novel nanomaterials. Conversely, we are examining how nanomaterials that are widely used in medical applications interact with amyloidogenic proteins and affect their folding and misfolding.

Selected Publications


1. Perrett S., A.K. Buell & T.P.J.K. Knowles (Editors) “Biological and Bio-inspired Nanomaterials”, 2019, Nature-Springer. ISBN: 978-981-13-9790-5.

2. Sunde M., Chapman M., Otzen D. & Perrett S. (Editors), “Functional Amyloids” Biomacromolecules vol. 7, 2017, MDPI. ISSN: 2218-273X

3. Perrett S. (Editor), “Amyloids in Health and Disease” Essays in Biochemistry vol. 56 (248 pages), 2014, Portland Press. ISBN: 781855781924

Books Chapters   

1. Roode, L.W.Y., Schimanovich, U., Wu, S., Perrett, S. & Knowles, T.P.J. “Protein microgels from amyloid fibril networks.” Biological and Bio-inspired Nanomaterials, Advances in Experimental Medicine and Biology vol. 1174 (Chapter 7, p. 223-263), 2019, Nature-Springer.

2. Rees, J.S., Li, X.W., Perrett, S., Lilley, K.S. & Jackson, A.P. “Selective proteomic proximity labeling assay using tyramide (SPPLAT): A quantitative method for the proteomic analysis of localised membrane-bound protein clusters.” Current Protocols in Protein Science vol. 88 (p.19.27.1-19.27.18), 2017, Wiley.


1. Yang, J., Dear, A.J., Michaels, T.C.T., Dobson, C.M., Knowles, T.P.J.K.*, Wu, S.* & Perrett, S.* (2018). Direct observation of oligomerization by single molecule fluorescence reveals amulti-step aggregation mechanism for the yeast prion protein Ure2. J. Am. Chem. Soc., 140, 2493-2503.

2. Gong, W., Hu, W., Xu, L., Wu, H., Wu, S., Zhang, H., Wang, J., Jones, GW.* & Perrett, S.* (2018).The C-terminal GGAP motif of Hsp70 mediates substrate recognition and stress response in yeast. J. Biol. Chem. 293, 17663-17675.

3. Xu, L., Gong, G.*, Cusack, S.A., Wu, H., Loovers, H.M., Zhang, H., Perrett, S. & Jones G.W.* (2018). The β6/β7 region of the Hsp70 substrate-binding domain mediates heat shock response and prion propagation. Cell. Mol. Life Sci., 75, 1445-1459.

4. Lou, F., Yang, J., Wu, S.* & Perrett, S.* (2017). A co-expression strategy to acheive labeling of individual subunits within a dimeric protein for single molecule analysis. ChemComm 53, 7971-8094.

5. Yang, W., Willemse J., Sawyer E.B., Lou F., Gong, W., Zhang, H., Gras, S.L.*, Claessen, D.* & Perrett, S.* (2017). The propensity of the bacterial rodlin protein RdlB to form amyloid fibrils determines its function in Streptomyces coelicolor. Scientific Reports 7, 42867.

6. Zhang, H., Yang, J., Si, W., Gong, W., Chen, C.* & Perrett, S.* (2016). Glutathionylation of the bacterial Hsp70 chaperone DnaK provides a link between oxidative stress and the heat shock response. J. Biol. Chem. 291, 6967-6981.

7. Zhou, X.M., Shimanovich, U., Herling, T.W., Wu, S., Dobson, C.M., Knowles, T.P.J.* & Perrett, S.* (2015) Enzymatically-active microgels from self-assembling protein nanofibrils for microflow chemistry. ACS Nano 9, 5772-5781.

8. Rees, J.S., Li, X.W., Perrett, S.,* Lilley, K.S.* & Jackson, A.P.* (2015) Protein neighbours and proximity proteomics. Molecular & Cellular Proteomics 14, 2848-2856. (Invited Review)

9. Wu, H., Gong, W., Yao, X., Wang, J., Perrett, S.* & Feng, Y.* (2015). Evolutionarily conserved binding of translationally-controlled tumor protein to eukaryotic elongation factor 1B. J. Biol. Chem. 290, 8694-710.

10. Zhou, X.M., Entwistle, A., Zhang, H., Jackson, A.P., Mason, T.O., Shimanovich, U., Knowles, T.P.J., Smith, A.T., Sawyer, E.B.* & Perrett, S.* (2014). Self-assembly of amyloid fibrils that display active enzymes. ChemCatChem 6, 1961-1968.

11. Li, X.W., Rees, J.S., Lilley, K.S., Howard, J.A., Zhang, H., Peng, X., Hamaia, S.W., Farndale, R.W., Perrett, S.* & Jackson, A.P.* (2014). New insights into the DT40 B cell receptor cluster using a proteomic proximity labeling assay. J. Biol. Chem. 289, 14434-14447. (Highlighted as a “Key Scientific Article” in Global Medical Discovery. Highlighted in Bulletin of the Chinese Academy of Sciences. Chapter invited for Current Protocols. Review invited for Mol. Cell. Proteom.)

12. Gong, W, Wang, J., Perrett, S.* & Feng, Y.* (2014). RBBP1 has an interdigitated double Tudor domain with DNA-binding activity. J. Biol. Chem. 289, 4882-4895.

13. Xu, L.Q., Wu, S., Buell, A.K., Cohen, S.I.A., Chen, L.J., Hu, W.H., Cusack, S.A., Itzhaki, L.S., Zhang, H.*, Knowles, T.P.J., Dobson, C.M., Welland, M.E., Jones, G.W. & Perrett S.* (2013). Influence of specific Hsp70 domains on Ure2 fibril formation in vitro. Phil. Trans. Roy. Soc. B 368, 20110410. (Invited submission)

14. Zhu, M., Perrett, S. & Nie, G.* (2013). Understanding the particokinetics of engineered nanomaterials for safe and effective therapeutic applications. SMALL 9, 1619-34.

15. Truman, A.W., Kristjansdottir, K., Wolfgeher, D., Hasin, N., Polier, S., Zhang, H., Perrett, S., Prodromou, C., Jones, G.W. & Kron, S.J.* (2012). CDK-dependent Hsp70 phosphorylation controls G1 cyclin abundance and cell cycle progression. CELL 151, 1308-1318.

16. Sawyer, E.B., Claessen D., Gras, S.L. & Perrett, S.* (2012) Exploiting amyloid: how and why bacteria use cross-β fibrils. Biochem. Soc. Trans. 40, 728-34. (Invited Review)

17. Chen, L.J., Sawyer, E.B. & Perrett, S.* (2011). The yeast prion protein Ure2: insights into the mechanism of amyloid formation. Biochem. Soc. Trans. 39, 1359-1364. (Invited review)

18. Li, Y., Zhou, Y., Wang, H.Y., Perrett, S., Zhao, Y.,* Tang, Z.* & Nie, G.* (2011). Chirality of gluthathione surface coating affects the cytotoxicity of quantum dots. Angew. Chem. Int. Ed. Engl. 50, 5860-5864. (Highlighted in Nature Materials (2011) 10, 480.)

19. Wang, Y.Q., Buell, A.K., Wang, X.Y., Welland M.E., Dobson, C.M., Knowles, T.P.J.* & Perrett, S.* (2011). Relationship between prion propensity and the rates of individual molecular steps of fibril assembly. J. Biol. Chem. 286, 12101-12107. (On the Cover.)

20. Zhang, H., Xu, L.Q. & Perrett, S.* (2011). Studying the effects of chaperones on amyloid fibril formation. Methods 53, 285-294. (Invited Review)

21. Zhang, Z.R. & Perrett, S.* (2009). Novel glutaredoxin activity of the yeast prion protein Ure2 reveals a native-like dimer within fibrils. J. Biol. Chem. 284, 14058-14067.

22. Fei, L. & Perrett, S.* (2009). Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils due to proximity of a potential amyloid stretch. J. Biol. Chem. 284, 11134-11141.

23. Zhang, H., Loovers, H.M., Xu, L.Q., Wang, M., Rowling, P.J.E., Itzhaki, L.S., Gong, W., Zhou, J.M., Jones, G.W. & Perrett, S.* (2009). Alcohol oxidase (AOX1) from Pichia pastoris is a novel inhibitor of prion propagation and a potential ATPase. Mol. Microbiol. 71, 702-716.

24. Perrett, S.* & Jones, G.W.* (2008). Insights into the mechanism of prion propagation. Curr. Opin. Struct. Biol. 18, 52-59. (Invited Review)

25. Gao, L., Zhuang, J., Nie, L., Zhang, J., Gu, N., Wang, T., Perrett, S.* & Yan, X.* (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology 2, 577-583. (Article) 


 From Sarah Perrett, 2019-11-22 update

Print Text Size: A A A   Close


Institute of Biophysics, CAS    Address: 15 Datun Road, Chaoyang District, Beijing, 100101, China
Tel:8610-64889872    Fax: 8610-64871293    E-mail: office@ibp.ac.cn