Home > Group Leaders > W


Jiangyun Wang, Ph.D, Prof.

Principal Investigator

National Laboratory of Biomacromolecules, IBP

To design easy-to-characterize, easy-to-produce, and easy-to-optimize metalloenzymes


Fax:010-64871293,Zip code:100101

Chinese personal homepage, Personal group site 

Biography & Introduction

2007-current Professor, Institute of Biophysics, Chinese Academy of Sciences

2003-2007 Postdoctoral training, Dept. of Chemistry (Advisor: Prof. Peter G. Schultz) The Scripps Research Institute

1998-2003 Ph.D., Dept. of Chemistry (Advisor: Prof. Kenneth S. Suslick) Univ. of Illinois at Urbana-Champaign

1994-1998 B.S., Dept. of Special Class for Gifted Young (Advisor: Prof. Zuyao Chen) Univ. of Science and Technology of China

Metalloenzymes catalyze some of the most challenging reactions, such as the conversion of H2O to O2, O2 to H2O, N2 to NH3 and H+ to H2, under mild physiological conditions. As these reactions are of tremendous importance for energy production and green chemistry, they are currently intensively investigated by biophysical chemists. However, these metalloenzymes are usually huge membrane protein complexes, and are hard to produce in large amount for performing biochemical studies, and are difficult to engineer to suit for industrial applications. The central aim in our laboratory is to use small, soluble protein scaffold, and the genetic incorporation of unnatural amino acid to design easy-to-characterize, easy-to-produce, and easy-to-optimize metalloenzymes which catalyze these important reactions with equal or greater efficiency/selectivity than that of the natural systems.

Recent Selected Publications(* corresponding author,  # equal contribution)

1. Yu Y#, Liu X#, Wang J*. Expansion of Redox Chemistry in Designer Metalloenzymes. Acc Chem Res. doi: 10.1021/acs.accounts.8b00627. [Epub ahead of print]

2. Liu X#, Kang F#, Hu C#, Wang L, Xu Z, Zheng D, Gong W, Lu Y, Ma Y, Wang J*. A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme. Nat Chem. 2018, 10 (12):1201-1206. doi: 10.1038/s41557-018-0150-4.

3. Mu Z, Zou Z, Yang Y, Wang W, Xu Y, Huang J, Cai R, Liu Y, Mo Y, Wang B, Dang Y, Li Y, Liu Y, Jiang Y, Tan Q, Liu X, Hu C, Li H, Wei S, Lou C, Yu Y, Wang J*. A genetically engineered Escherichia coli that senses and degrades tetracycline antibiotic residue. Synth Syst Biotechnol. 2018, 3(3):196-203. doi: 10.1016/j.synbio.2018.05.001.

4. Dong J, Li F, Gao F, Wei J, Lin Y, Zhang Y, Lou J, Liu G, Dong Y, Liu L, Liu H, Wang J, Gong W*. Structure of tRNA-Modifying Enzyme TiaS and Motions of Its Substrate Binding Zinc Ribbon. J Mol Biol. 2018, 430(21):4183-4194. doi: 10.1016/j.jmb.2018.08.015.

5. Yang F#, Xiao P#, Qu CX#, Liu Q#, Wang LY, Liu ZX, He QT, Liu C, Xu JY, Li RR, Li MJ, Li Q, Guo XZ, Yang ZY, He DF, Yi F, Ruan K, Shen YM, Yu X, Sun JP*, Wang J*. Allosteric mechanisms underlie GPCR signaling to SH3-domain proteins through arrestin. Nat Chem Biol. 2018, 14(9):876-886. doi: 10.1038/s41589-018-0115-3.

6. Wang L#, Chen X#, Guo X#, Li J, Liu Q, Kang F, Wang X, Hu C, Liu H, Gong W, Zhuang W, Liu X*, Wang J*. Significant expansion and red-shifting of fluorescent protein chromophore determined through computational design and genetic code expansion. Biophys Rep. 2018, 4(5):273-285. doi: 10.1007/s41048-018-0073-z.

7. Zhang J#, Wang L#, Zhang J, Zhu J, Pan X, Cui Z, Wang J*, Fang W*, Li Y*. Identifying and Modulating Accidental Fermi Resonance: 2D IR and DFT Study of 4-Azido-l-phenylalanine. J Phys Chem B. 2018, 122(34):8122-8133. doi: 10.1021/acs.jpcb.8b03887.

8. Li J, Griffith WP, Davis I, Shin I, Wang J, Li F, Wang Y, Wherritt DJ, Liu A*. Cleavage of a carbon-fluorine bond by an engineered cysteine dioxygenase. Nat Chem Biol. 2018, 14(9):853-860. doi: 10.1038/s41589-018-0085-5.

9. Zhang F#, Zhou Q#, Yang G, An L, Li F*, Wang J*. A genetically encoded 19F NMR probe for lysine acetylation. Chem Commun (Camb). 2018, 54(31):3879-3882. doi: 10.1039/c7cc09825a.

10. Chen L, Naowarojna N, Song H, Wang S, Wang J, Deng Z, Zhao C, Liu P*. Use of a Tyrosine Analogue To Modulate the Two Activities of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis, Cysteine Oxidation versus Oxidative C-S Bond Formation. J Am Chem Soc. 2018, 140(13):4604-4612. doi: 10.1021/jacs.7b13628.

11. Yu Y, Hu C, Xia L, and Wang J*. Artificial Metalloenzyme Design with Unnatural Amino Acids and Non-Native Cofactors. ACS Catal. 2018, 8 (3):1851–1863 doi: 10.1021/acscatal.7b03754

12. Pan Y, Zhang H, Zheng Y, Zhou J, Yuan J, Yu Y, Wang J*. Resveratrol Exerts Antioxidant Effects by Activating SIRT2 To Deacetylate Prx1. Biochemistry. 2017, 56(48):6325-6328. doi: 10.1021/acs.biochem.7b00859.

13. Lu J#, Zhang H#, Chen X#, Zou Y, Li J, Wang L, Wu M, Zang J, Yu Y, Zhuang W*, Xia Q*, Wang J*. A small molecule activator of SIRT3 promotes deacetylation and activation of manganese superoxide dismutase. Free Radic Biol Med. 2017, 112:287-297. doi: 10.1016/j.freeradbiomed.2017.07.012.

14. Hu C#, Yu Y#, Wang J*. Improving artificial metalloenzymes' activity by optimizing electron transfer. Chem Commun (Camb). 2017, 53(30):4173-4186. doi: 10.1039/c6cc09921a.

15. Yang F, Yu X, Liu C, Qu CX, Gong Z, Liu HD, Li FH, Wang HM, He DF, Yi F, Song C, Tian CL, Xiao KH, Wang JY*, Sun JP*. Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and 19F-NMR. Nat Commun. 2015, 6:8202. doi: 10.1038/ncomms9202.

16. Yang Y#, Zhou Q#, Wang L#, Liu X, Zhang W, Hu M, Dong J, Li J, Xiaoxuan L, Ouyang H, Li H, Gao F, Gong W, Lu Y*, Wang J*. Significant Improvement of Oxidase Activity through the Genetic Incorporation of a Redox-active Unnatural Amino Acid. Chem Sci. 2015, 6(7):3881-3885. doi: 10.1039/C5SC01126D

17. Yu Y#, Cui C#, Liu X#, Petrik ID, Wang J*, Lu Y*. A Designed Metalloenzyme Achieving the Catalytic Rate of a Native Enzyme. J Am Chem Soc. 2015, 137(36):11570-3. doi: 10.1021/jacs.5b07119.

18. Yu Y, Hu C, Liu X, Wang J*. Synthetic Model of the Oxygen-Evolving Center: Photosystem II under the Spotlight. Chembiochem. 2015, 16(14):1981-3. doi: 10.1002/cbic.201500302.

19. He T, Gershenson A, Eyles SJ, Lee YJ, Liu WR, Wang J, Gao J, Roberts MF*. Fluorinated Aromatic Amino Acids Distinguish Cation-π Interactions from Membrane Insertion. J Biol Chem. 2015, 290(31):19334-42. doi: 10.1074/jbc.M115.668343.

20. Lv X#, Yu Y#, Zhou M, Hu C, Gao F, Li J, Liu X, Deng K, Zheng P, Gong W, Xia A*, Wang J*. Ultrafast photoinduced electron transfer in green fluorescent protein bearing a genetically encoded electron acceptor. J Am Chem Soc. 2015, 137(23):7270-3. doi: 10.1021/jacs.5b03652.

21. Wang T, Zhou Q*, Li F, Yu Y, Yin X*, Wang J*. Genetic Incorporation of N(ε)-Formyllysine, a New Histone Post-translational Modification. Chembiochem. 2015, 16(10):1440-2. doi: 10.1002/cbic.201500170.

22. Zheng Y, Yu F, Wu Y, Si L, Xu H, Zhang C, Xia Q, Xiao S, Wang Q, He Q, Chen P, Wang J, Taira K, Zhang L, Zhou D*. Broadening the versatility of lentiviral vectors as a tool in nucleic acid research via genetic code expansion. Nucleic Acids Res. 2015, 43(11):e73. doi: 10.1093/nar/gkv202.

23. Li F#, Dong J#, Hu X#, Gong W, Li J, Shen J, Tian H, Wang J*. A covalent approach for site-specific RNA labeling in Mammalian cells. Angew Chem Int Ed Engl. 2015, 54(15):4597-602. doi: 10.1002/anie.201410433.

24. Yu Y#, Lv X#, Li J, Zhou Q, Cui C, Hosseinzadeh P, Mukherjee A, Nilges MJ, Wang J*, Lu Y*. Defining the role of tyrosine and rational tuning of oxidase activity by genetic incorporation of unnatural tyrosine analogs. J Am Chem Soc. 2015 Apr 15;137(14):4594-7. doi: 10.1021/ja5109936.

25. Liu X#, Jiang L#, Li J#, Wang L, Yu Y, Zhou Q, Lv X, Gong W, Lu Y, Wang J*. Significant expansion of fluorescent protein sensing ability through the genetic incorporation of superior photo-induced electron-transfer quenchers. J Am Chem Soc. 2014, 136(38):13094-7. doi: 10.1021/ja505219r.

26. Pan Y, Jin JH, Yu Y*, Wang J*. Significant enhancement of hPrx1 chaperone activity through lysine acetylation. Chembiochem. 2014, 15(12):1773-6. doi: 10.1002/cbic.201402164.

27. Hu C#, Chan SI#, Sawyer EB#, Yu Y, Wang J*. Metalloprotein design using genetic code expansion. Chem Soc Rev. 2014, 43(18):6498-510. doi: 10.1039/c4cs00018h.

28. Wu FC#, Zhang H#, Zhou Q, Wu M, Ballard Z, Tian Y, Wang JY*, Niu ZW*, and Huang Y. Expanding the genetic code for site-specific labelling of tobacco mosaic virus coat protein and building biotin-functionalized virus-like particles. Chem. Commun. 2014, 50, 4007-4009. doi: 10.1039/c3cc49137d.

29. Bi K#, Zheng Y#, Gao F, Dong J, Wang J, Wang Y*, Gong W*. Crystal structure of E. coli arginyl-tRNA synthetase and ligand binding studies revealed key residues in arginine recognition. Protein Cell. 2014, 5(2):151-9. doi: 10.1007/s13238-013-0012-1.

30. Lin YW*, Wang JY* & Lu Y*. Functional tuning and expanding of myoglobin by rational protein design. Science China Chemistry. 2014, 57(3): 346-355. doi: 10.1007/s11426-014-5063-5

31. Zheng Y, Lv X, Wang J*. A genetically encoded sulfotyrosine for VHR function research. Protein Cell. 2013, 4(10):731-4. doi: 10.1007/s13238-013-3907-y.

32. Lin YW, Wang J*. Structure and function of heme proteins in non-native states: a mini-review. J Inorg Biochem. 2013, 129:162-71. doi: 10.1016/j.jinorgbio.2013.07.023.

33. Li F#, Zhang H#, Sun Y#, Pan Y#, Zhou J, Wang J*. Expanding the genetic code for photoclick chemistry in E. coli, mammalian cells, and A. thaliana. Angew Chem Int Ed Engl. 2013, 52(37):9700-4. doi: 10.1002/anie.201303477.

34. Lin YW, Sawyer EB*, Wang J*. Rational heme protein design: all roads lead to Rome. Chem Asian J. 2013, 8(11):2534-44. doi: 10.1002/asia.201300291.

35. Liu X#, Li J#, Hu C, Zhou Q, Zhang W, Hu M, Zhou J, Wang J*. Significant expansion of the fluorescent protein chromophore through the genetic incorporation of a metal-chelating unnatural amino acid. Angew Chem Int Ed Engl. 2013, 52(18):4805-4809. doi: 10.1002/anie.201301307.

36. Li F#, Shi P#, Li J#, Yang F, Wang T, Zhang W, Gao F, Ding W, Li D, Li J, Xiong Y, Sun J, Gong W*, Tian C, Wang J*. A genetically encoded 19F NMR probe for tyrosine phosphorylation. Angew Chem Int Ed Engl. 2013, 52(14):3958-62. doi: 10.1002/anie.201300463.

37. Xu X, Hu X*, Wang J*. A new synthetic protocol for coumarin amino acid. Beilstein J Org Chem. 2013, 9:254-9. doi: 10.3762/bjoc.9.30.

38. Zhou Q#, Hu M#, Zhang W#, Jiang L, Perrett S, Zhou J, Wang J*. Probing the function of the Tyr-Cys cross-link in metalloenzymes by the genetic incorporation of 3-methylthiotyrosine. Angew Chem Int Ed Engl. 2013, 52(4):1203-7. doi: 10.1002/anie.201207229.

39. Yu Z#, Pan Y#, Wang Z, Wang J*, Lin Q*. Genetically encoded cyclopropene directs rapid, photoclick-chemistry-mediated protein labeling in mammalian cells. Angew Chem Int Ed Engl. 2012, 51(42):10600-4. doi: 10.1002/anie.201205352.

40. Liu X#, Li J#, Dong J#, Hu C, Gong W*, Wang J*. Genetic incorporation of a metal-chelating amino acid as a probe for protein electron transfer. Angew Chem Int Ed Engl. 2012, 51(41):10261-5. doi: 10.1002/anie.201204962.

41. Hua T#, Wu D#, Ding W, Wang J, Shaw N*, Liu ZJ*. Studies of human 2,4-dienoyl CoA reductase shed new light on peroxisomal β-oxidation of unsaturated fatty acids. J Biol Chem. 2012, 287(34):28956-65. doi: 10.1074/jbc.M112.385351.

42. Liu X#, Yu Y#, Hu C, Zhang W, Lu Y*, Wang J*. Significant increase of oxidase activity through the genetic incorporation of a tyrosine-histidine cross-link in a myoglobin model of heme-copper oxidase. Angew Chem Int Ed Engl. 2012, 51(18):4312-6. doi: 10.1002/anie.201108756.

43. Charbon G, Wang J, Brustad E, Schultz PG, Horwich AL, Jacobs-Wagner C, Chapman E*. Localization of GroEL determined by in vivo incorporation of a fluorescent amino acid. Bioorg Med Chem Lett. 2011, 21(20):6067-70. doi: 10.1016/j.bmcl.2011.08.057.

44. Charbon G, Brustad E, Scott KA, Wang J, L?bner-Olesen A, Schultz PG, Jacobs-Wagner C, Chapman E*. Subcellular protein localization by using a genetically encoded fluorescent amino acid. Chembiochem. 2011, 12(12):1818-21. doi: 10.1002/cbic.201100282.

45. Wang J*, Zhang W, Song W, Wang Y, Yu Z, Li J, Wu M, Wang L, Zang J, Lin Q*. A biosynthetic route to photoclick chemistry on proteins. J Am Chem Soc. 2010, 132 (42) : 14812 -8. doi: 10.1021/ja104350y.

46. Mills JH, Lee HS, Liu CC, Wang J, Schultz PG*. A genetically encoded direct sensor of antibody-antigen interactions. Chembiochem. 2009, 10(13):2162-4. doi: 10.1002/cbic.200900254.

47. Peters FB, Brock A, Wang J, Schultz PG*. Photocleavage of the polypeptide backbone by 2-nitrophenylalanine. Chem Biol. 2009, 16(2):148-52. doi: 10.1016/j.chembiol.2009.01.013.

48. Guo J, Wang J, Lee JS, Schultz PG*. Site-specific incorporation of methyl- and acetyl-lysine analogues into recombinant proteins. Angew Chem Int Ed Engl. 2008, 47(34):6399-401. doi: 10.1002/anie.200802336. No abstract available.

49. Guo J#, Wang J#, Anderson JC, Schultz PG*. Addition of an alpha-hydroxy acid to the genetic code of bacteria. Angew Chem Int Ed Engl. 2008, 47(4):722-5. doi: 10.1002/anie.200704074

50. Wang J, Rosenblatt MM, Suslick KS*. NMR structures of peptide--RuII(porphyrin) complexes. J Am Chem Soc. 2007, 129(46):14124-5. doi: 10.1021/ja075532v

51. Wang J, Schiller SM, Schultz PG*. A biosynthetic route to dehydroalanine-containing proteins.  Angew Chem Int Ed Engl. 2007, 46(36):6849-51. doi: 10.1002/anie.200702305

52. Wang J, Xie J, Schultz PG*. A genetically encoded fluorescent amino acid. J Am Chem Soc. 2006, 128(27):8738-9. doi: 10.1021/ja062666k

53. Rosenblatt MM#, Wang J#, Suslick KS*. De novo designed cyclic-peptide heme complexes. Proc Natl Acad Sci U S A. 2003, 100(23):13140-5. doi: 10.1073/pnas.2231273100

54. Wang J, Luthey-Schulten ZA, Suslick KS*. Is the olfactory receptor a metalloprotein? Proc Natl Acad Sci U S A. 2003, 100(6):3035-9. doi: 10.1073/pnas.262792899


From Jiangyun Wang, 2019-03-12 update 

Print Text Size: A A A   Close


Institute of Biophysics, CAS    Address: 15 Datun Road, Chaoyang District, Beijing, 100101, China
Tel:8610-64889872    Fax: 8610-64871293    E-mail: office@ibp.ac.cn