Home > Resources > Latest Important Articles

N6-methyladenosine RNA modification suppresses antiviral innate sensing pathways via reshaping double-stranded RNA, Nat Commun, 11 Mar 2021

Updated: 2021-03-11

Nature Communications, 11 March, 2021, DOI:https://doi.org/10.1038/s41467-021-21904-y

 

N6-methyladenosine RNA modification suppresses antiviral innate sensing pathways via reshaping double-stranded RNA

 

Weinan Qiu, Qingyang Zhang, Rui Zhang, Yangxu Lu, Xin Wang, Huabin Tian, Ying Yang, Zijuan Gu, Yanan Gao, Xin Yang, Guanshen Cui, Baofa Sun, Yanan Peng, Hongyu Deng, Hua Peng, Angang Yang, Yun-Gui Yang & Pengyuan Yang 

 

Abstract


Double-stranded RNA (dsRNA) is a virus-encoded signature capable of triggering intracellular Rig-like receptors (RLR) to activate antiviral signaling, but whether intercellular dsRNA structural reshaping mediated by the N6-methyladenosine (m6A) modification modulates this process remains largely unknown. Here, we show that, in response to infection by the RNA virus Vesicular Stomatitis Virus (VSV), the m6A methyltransferase METTL3 translocates into the cytoplasm to increase m6A modification on virus-derived transcripts and decrease viral dsRNA formation, thereby reducing virus-sensing efficacy by RLRs such as RIG-I and MDA5 and dampening antiviral immune signaling. Meanwhile, the genetic ablation of METTL3 in monocyte or hepatocyte causes enhanced type I IFN expression and accelerates VSV clearance. Our findings thus implicate METTL3-mediated m6A RNA modification on viral RNAs as a negative regulator for innate sensing pathways of dsRNA, and also hint METTL3 as a potential therapeutic target for the modulation of anti-viral immunity.

 

Article linkhttps://www.nature.com/articles/s41467-021-21904-y

 

 

Contact Us

Tel: 010-64889872

E-Mail: webadmin@ibp.ac.cn

Address: No 15 Datun Road, Chaoyang District, Beijing

Postcode: 100101