Home > Resources > Latest Important Articles

Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway, Nano Today, 22 Jun 2022

Updated: 2022-06-22

Nano Today, 22 June, 2022, DOI:https://doi.org/10.1016/j.nantod.2022.101530

 

Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway


Pir Muhammad, Sumaira Hanif, Jingyun Li, Anna Guller, Fawad Ur Rehman, Muhammad Ismail, Dongya Zhang, Xiyun Yan, Kelong Fan, Bingyang Shi

 

Abstract


Glioblastoma (GBM) is a fatal and recurrent brain cancer without any complete prevailing remedy. Here, we explored single-atom nanozyme-mediated catalytic therapy to precisely target drug-resistant GBM via the lysosomal-mediated autophagic cell death pathway. The ultrasmall carbon dots supported iron single-atom nanozyme (Fe-CDs) were rationally designed and developed, exhibiting six naturally occurring enzymes: oxidase, catalase, superoxide dismutase, and the peroxidase family (peroxidase, glutathione peroxidase, and thiol peroxidase). Importantly, Fe-CDs act as a drug-free nanomedicine that modulates the tumor microenvironment via reactive oxygen species regulation and lysosome-mediated autophagy owing to the multiple enzyme-mimic properties. In addition, we introduce BBB permeable and glioma targeting peptides on Fe-CDs via surface modification for selectively GBM targeting in vivo. Our findings suggest that the cascade enzymatic activities of Fe-CDs stimulate autophagy to effectively inhibit tumor growth in drug-resistant GBM mice models. Thus, the new-generation Fe-CDs present great potential to be a robust and versatile remedial nanoplatform with minimal toxicity and high potency for precise drug-resistant GBM therapy.

 

Article link:https://www.sciencedirect.com/science/article/abs/pii/S1748013222001578?via%3Dihub

 

 

Contact Us

Tel: 010-64889872

E-Mail: webadmin@ibp.ac.cn

Address: No 15 Datun Road, Chaoyang District, Beijing

Postcode: 100101