Ping Zhu, Ph.D, Prof.
-
Principal Investigator
State Key Laboratory of Epigenetic Regulation and Intervention, IBP
Research Interests: Cryo-electron microscopy (cryo-EM); Chromatin and virus structures
Email: zhup@ibp.ac.cn
Tel: 010-64888799 (office), 010-64888813 (lab)
Address: 15 Datun Road, Chaoyang District, Beijing, 100101, China
Chinese personal homepage
- Biography
1986.09 - 1990.06 B.S., Zhejiang Univ., Hangzhou, China
1990.09 - 1993.06 M.S., Xi’an Jiaotong Univ., Xi’an, China
1993.09 - 1997.06 Ph.D., Tsinghua Univ., Beijing, China
1997.07 - 1998.12 Lecturer, Tsinghua Univ., Beijing, China
1999.03 - 2008.05 Postdoctoral Research Associate; Assist. in Research (NTTF) ; Associate Scholar/Scientist (NTTF); Florida State Univ., Tallahassee, Florida, USA
2008.06 - Principal Investigator, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Awards
- Membership in Academies & Societies
- Research Interests
Rapidly developed in the past years, cryo-electron microscopy (cryo-EM) technology provides a unique way to study the 3D structure of macrobiomolecules in their native status. Our lab is interested in the 3D reconstruction and structural analysis of virus, chromatin and other biomacromolecules and their complexes, primarily utilizing cryo electron microscopy (cryo-EM) and electron tomography (ET) technologies.
The main research interests in the laboratory are:
1. Cryo-electron microscopy
We are interested in the structural study of functional important biomacromolecules and complexes, the in-situ structures of molecular machines, and the visualization of significant biological processes. We are also interested in the methodology involved in the cryo-EM 3D reconstruction process.
2. Chromatin structure and epigenetic regulation
We are interested in the higher-order structure of chromatin (including in vitro and in vivo), and how different epigenetic factors, e.g. histone variant, histone modification, chromatin remodeler, etc, may affect and regulate the structure of nucleosome and chromatin fibers.
3. The assembly, infection and replication of viruses
We are interested in the structures of viruses at different states, trying to reveal the molecular mechanisms of viral assembly, infection and replication. We are also interested in the structural characterizations of vaccine candidates, aiming to help the drug and vaccine designs against these pathogens.
- Grants
- Selected Publications
(*: Corresponding author)
1. Xiao H#, Shi XX#, Li M#, Wang YW#, Wang DW, Mei LC, Lin HY, Zhu P*, Yang GF*. (2026) Structural Insights into the Molecular Mechanisms of OsFBN5-Induced OsSPS3 Catalysis. Nat. Plants, published online https://doi.org/10.1038/s41477-025-02184-6
2. Liu C#, Wu K#, Choi HJ#, Han HL, Zhang X, Watson JL, Ahn G, Zhang JZ, Shijo S, Good LL, Fischer CM, Bera AK, Kang A, Brackenbrough E, Coventry B, Hick DR, Qamar S, Li X, Decarreau J, Gerben SR, Yang W, Goreshnik I, Vafeados D, Wang X, Lamp M, Murray A, Kenny S, Bauer M, Hoofnagle AN, Zhu P, Knowles TPJ, Baker D*. (2025) Diffusing protein binders to intrinsically disordered proteins. Nature, 644:809-817
3. Zhang HN#, Wang H#*, Li Y, Fan Y, Zhang Z, Chen H, Song K, Huang L*, and Zhu P*. (2025) Insights into the spool-like architecture and infection strategy of an enveloped archaeal virus. Sci. Adv., 11: eadv7326
4. Tian H#, Zeng W#*, Wang Z, Li SQ, Wei W, Li SS, Yin X, Na W, Wang Y, Song K, Zhu P*, Liang W*. (2025) P-Pev: micelle-like complexes transformed from tumor extracellular vesicles by PEG-PE for personalized therapeutic tumor vaccine. Biomaterials, 321: 123333
5. Wang L#, Zhang HN#, Jia Q#, Li W, Yang C, Ma L, Li M, Lu Y*, Zhu H*, Zhu P*. (2025) Cryo-EM structures reveal the acetylation process of piccolo NuA4. Proc. Natl. Acad. Sci. USA, 122(12): e2414490122
6. Li R#, Bao K#, Liu C, Ma X, Hua Z*, Zhu P*, Hou B*. (2025) Competition propels, rather than limits, the success of low-affinity B cells in the germinal center response. Cell Rep., 44:115334.
7. Liu J#, Gao L#, Wang Y, Qi X, Zhang X, Bao K, Gao Y*, Wang X*, Zhu, P*. (2025) Cryo-EM Structural Analysis of Avian Reovirus in Different States. J. Chin. Elec. Micro. Soc., 44(1):10-17 (in Chinese)
8. Na W, Zeng W*, Song K, Wang Y, Wang L, Zhao Z, Jin L, Zhu P*, Liang W*. (2025) PKM2, the "K+sink" in the tumor interstitial fluid. Protein & Cell, 16(4):303-308
9. Li W#, Hu J#, Song F#, Yu J#, Peng X, Zhang S, Wang L, Hu M, Liu JC, Wei Y, Xiao X, Li Y, Li D, Wang H, Zhou BR, Dai L, Mou Z, Zhou M, Zhang HN, Zhou Z, Zhang H, Bai YW, Zhou JQ, Li W, Li G*, Zhu P*. (2024) Structural basis for linker histone H5-nucleosome binding and chromatin fiber compaction. Cell Res. 34:707-24
10. Song K, Wang Y, Dong W, Li Z, Xia Q*, Zhu P*, He H*. (2024) Decoding silkworm spinning programmed by pH and metal ions. Sci. Bull., 69(6):792-802
11. Li J#, Zhang HN#, Li D, Liu YJ, Bayer EA, Cui Q, Feng Y*, Zhu P*. (2023) Structure of the transcription open complex of distinct σI factors. Nat. Comm., 14: 6455
12. Li Y#, Zhang HN#, Li X#, Wu W, Zhu P*. (2023) Cryo-ET study from in vitro to in vivo revealed a general folding mode of chromatin with two-start helical architecture. Cell Rep., 42:113134
13. Huang L#, Wang Y#, Long H#*, Zhu H, Wen Z, Zhang L, Zhang W, Guo Z, Wang L, Tang F, Hu J, Bao K, Zhu P*, Li G*, Zhou Z*. (2023) Structural insight into H4K20 methylation on H2A.Z-nucleosome by SUV420H1. Mol. Cell, 83(16):2884-95 (cover)
14. Zhang HN#, Li Y#, Liu Y, Li D, Wang L, Song K, Bao K, Zhu P*. (2023) A method for restoring signals and revealing individual macromolecule states in cryo-ET, REST. Nat. Comm.,14:2937
15. Zhang H#, Li H#, Zhang F*, Zhu P*. (2023) A strategy combining denoising and cryo-EM single particle analysis. Brief. Bioinform., 24(3):bbad148
16. Bao K#, Zhang X#, Li D#, Sun W, Sun Z, Wang J*, Zhu P*. (2022) In situ structures of polymerase complex of mammalian reovirus illuminate RdRp activation and transcription regulation. Proc. Natl. Acad. Sci. USA, 119(50):e2203054119
17. Li D#, Zhang X#, Wang Y#, Zhang HN, Song K, Bao K, Zhu P*. (2022) A new polymorphism of human amylin fibrils with similar protofilaments and a conserved core. iScience, 25(12):105705
18. Huang X#, Wang Y#, Yu C#, Zhang H#, Ru Q#, Li X, Song K, Zhou M, Zhu P*. (2022) Cryo-EM structures reveal the dynamic transformation of human alpha-2-macroglobulin working as a protease inhibitor. SCI. CHINA Life Sci., 65(12):2491-2504
19. Li H#, Zhang H#, Wan X, Yang Z, Li C, Li J, Han R*, Zhu P*, Zhang F*. (2022) Noise-Transfer2Clean: Denoising cryo-EM images based on noise modeling and transfer. Bioinformatics, 38(7), 2022-29
20. Bao K#, Qi X#, Li Y, Gong M, Wang X*, Zhu P*. (2022) Cryo-EM structures of infectious bursal disease virus with different virulence provide insights on their assembly and invasion. Sci. Bull., 67(6):646-54
21. Zhu X, Zhang X*, Zhu P*. (2022) Study on the influences of different metal ions on the formation of human islet amyloid polypeptide fibrils. J. Chin. Elec. Micro. Soc., 41(3):265-71 (in Chinese)
22. Zhou M#, Dai L#, Li C, Shi L, Huang Y, Guo Z, Wu F, Zhu P*, Zhou Z*. (2021) Structural mechanism of nucleosome dynamics governed by human histone variants H2A.B and H2A.Z.2.2. EMBO J., 40(1):e105907
23. Zhang X, Li D, Zhu X, Wang Y, Zhu P*. (2020) Structural characterization and cryo-electron tomography analysis of human islet amyloid polypeptide suggest a synchronous process of the hIAPP1-37 amyloid fibrillation. Biochem. Biophys. Res. Comm., 533(1):125-131
24. Guan H#, Wang Y#, Perčulija V, Saeed AF, Liu Y, Li J, Jan SS, Li Y, Zhu P*, Ouyang S*. (2020) Cryo-electron microscopy structure of the SADS-CoV spike glycoprotein provides insights into an evolution of unique coronavirus spike proteins. J. Virol., 94(22):e01301-20
25. Yang W#, Wang Y#, Guo J#, He L, Zhou Y, Zheng H, Liu Z, Zhu P*, Zhang XC*. (2020) Cryo‐electron microscopy structure of CLHM1 ion channel from Caenorhabditis elegans. Protein Sci. 29(8):1803-15
26. Guan H#, Wang Y#, Yu T#, Huang Y#, Li M, Saeed AF, Perčulija V, Li D, Xiao J, Wang D, Zhu P*, Ouyang S*. (2020) Cryo-EM structures of the human PA200 and PA200-20S complex reveal regulation of proteasome gate opening and two PA200 apertures. PLoS Biol., 18(3): e3000654
27. Cao J#, Zhang J#, Lu Y, Luo S*, Zhang J*, Zhu P*. (2019) Cryo-EM structure of native spherical subviral particles isolated from HBV carriers. Virus Res., 259:90-96
28. Wang H#, Guo Z#, Feng H, Chen Y, Chen X, Li Z, Hernández-Ascencio W, Dai X, Zhang Z, Zheng X, Mora-López M, FU Y, Zhang C, Zhu P*, Huang L*. (2018) Novel Sulfolobus virus with an exceptional capsid architecture. J. Virol., 92(5): e01727-17
29. Xu P#, Li C#, Chen Z, Jiang S, Fan S, Wang J, Dai J, Zhu P*, Chen Z*. (2016) The NuA4 core complex acetylates nucleosomal histone H4 through a double recognition mechanism, Mol. Cell, 63(6):965-75
30. Li X#, Feng H#, Zhang J, Sun L, Zhu P*. (2015) Analysis of Chromatin Fiber in Hela Cell with Electron Tomography. Biophys. Report, 1(1): 51-60 (cover story)
31. Li Z, Qi X, Ren X, Cui L, Wang X*, Zhu P*. (2015) Molecular characteristics and evolutionary analysis of a very virulent infectious bursal disease virus. SCI. China Life Sci., 58(8): 731-38 (cover story)
32. Yao Q, Lu Q, Wan X, Song F, Xu Y, Hu M, Zamyatina A, Liu X, Huang N, Zhu P*, Shao F*. (2014) A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family. elife. 3:e03714
33. Gong M#, Zhu H#, Zhou J, Yang C, Feng J, Huang X, Ji G, Xu H*, Zhu P*. (2014) Cryo-EM study of insect cell-expressed Enterovirus 71 and Coxsackievirus A16 virus-like particles provides a structural basis for vaccine development. J. Virol., 88(11):6444-52
34. Chen P, Zhu P*, Li G*. (2014) New insights into the helical structure of 30-nm chromatin fibers. Protein & Cell. 5(7):489-91
35. Song F#, Chen P#, Sun D, Wang M, Dong L, Liang D, Xu RM, Zhu P*, Li G*. (2014) Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science. 344 (6182): 376-80 (*corresponding author, Research Article)
36. Cheng L#, Huang X#, Li X, Xiong W, Sun W, Yang C, Zhang K, Wang Y, Liu H, Huang X, Ji G, Sun F, Zheng C*, Zhu P*. (2014) Cryo-EM structures of two bovine adenovirus type 3 intermediates. Virology, 450-451:174-81
37. Zhu H#, Zhuang J#, Feng H, Liang R, Wang J, Xie L*, Zhu P*. (2014) Cryo-EM structure of isomeric molluscan hemocyanin triggered by viral infection. PLoS One, 9(6): e98766
38. Liu J, Zhu H, Feng H, Gong M, Zhu P*. (2014) Architecture of Human HDAC1/2-RbAp46/48 Core Protein Complex Revealed by Electron Microscopy. Prog. in Biochem. & Biophys. 2014, 41(6): 591-97 (in Chinese)
39. Sun D, Song F, Huang L, Zhang K, Ji G, Chen P*, Zhu P*. (2013) In vitro Assembly and Electron Microscopic Analysis of 30 nm Chromatin Fibers. Prog. in Biochem. & Biophys. 2013, 40(7): 739-47 (in Chinese, cover story)
40. Yang C, Ji G, Liu H, Zhang K, Liu G, Sun F, Zhu P*, Cheng L*. (2012) Cryo-EM Structure of a transcribing cypovirus. Proc. Natl. Acad. Sci. USA, 109(16):6118-23
41. Cheng L#, Sun J#, Zhang K, Mou Z, Huang X, Ji G, Sun F, Zhang J*, Zhu P*. (2011) Atomic model of a cypovirus built from cryo-EM structure provides insight into the mechanism of mRNA capping. Proc. Natl. Acad. Sci. USA, 108(4):1373-78
42. Zhu P, Winkler H, Chertova E, Taylor KA, Roux KH*. (2008) Cryoelectron tomography of HIV-1 envelope spikes: further evidence for tripod-like legs. PLoS Pathog. 4(11): e1000203.
43. Zhu P, Liu J, Bess J., Chertova E, Lifson J, Grisé H, Ofek G, Taylor KA, Roux KH*. (2006) Distribution and Three-Dimensional Structure of AIDS Virus Envelope Spikes. Nature. 441:847-852 (Article)
44. Zhu P, Chertova E., Bess J, Lifson J, Arthur L, Liu J, Taylor KA, Roux KH*. (2003) Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc. Natl. Acad. Sci. USA, 100(26):15812-15817
45. Zhu P, Olson WC, Roux KH*. (2001) Structural Flexibility and Function Valency of CD4-IgG2 (PRO 542): Potential for Crosslinking HIV-1 Envelope Spikes, J Virol., 75(14):6682-6686.
(From Ping Zhu, January 9, 2026)
