
Xiangxi Wang, Ph.D, Prof.
-
Principal Investigator
State Key Laboratory of Biomacromolecules, IBP
Research Interests: Innate immunity and host-pathogen interaction
Email: xiangxi@ibp.ac.cn
Tel: 010-64888806
Address: 15 Datun Road, Chaoyang District, Beijing, 100101, China
Chinese personal homepage
- Biography
2005.09 - 2009.06 B.S., School of Life Science, Sichuan University
2009.09 - 2014.06 Ph.D., Institute of Biophysics, Chinese Academy of Sciences
2014.07 - 2014.10 Associate professor, Institute of Biophysics, Chinese Academy of Sciences
2014.07 - 2016.03 Academic visitor, University of Oxford
2014.11 - Professor, Institute of Biophysics, China
- Awards
2015 4th BeiShizhang Young Biophysicist Award
1st Young Elite scientist sponsorship by CAST
2014 Young professor sponsorship, Institute of Biophysics
Ray Wu Scholarship
2011 17th International Biophysics Congress Young Scientist Award
- Membership in Academies & Societies
- Research Interests
Viral diseases are serious public health threats and have caused considerable concern over public health safety. Despite outnumbering all other cellular forms of life, our knowledge of the viral life cycle remains limited. During the viral life cycle, most viruses undergo a series of conformational changes from the immature to the mature, uncoatingor fusogenic form of the virion. In the infected cells, newly assembled immature viruses mature via structural transformations triggered by limited proteolysis or acidic pH or host factors. The virus systems selected are representatives from three families of virus that we have studied for several years, the Picornaviridae, Flaviviridae and Herpesviradae. My research aims to completely understand the various steps of the virus cycle, including the entry, replication and assembly using a combination of structural analysis, cellular assays, virological, reverse genetics and animal studies. The study of virus cycle facilitates the design of better antiviral compounds and vaccines, which is in agreement with our commitment to translate our research findings into health benefits.
- Grants
- Selected Publications
2025年度
1. Li J#, Cao L#, Zhao Y, Shen J, Wang L, Feng M, Zhu M, Ye Y, Kormelink R, Tao X*, Wang X*. Structural basis for the activation of a plant bunyavirus replication machinery and its dual-targeted inhibition by ribavirin. Nature plants. 2025.
2. Yu Q#, Fu W#, Zhang Z#, Liang D#, Wang L, Zhu Y, Sun E, Li F, Bu Z*, Chen Y*, Wang X*, Zhao D*. The p15 protein is a promising immunogen for developing protective immunity against African swine fever virus. Protein Cell. 2025.
3. Jian F#, Anna Z#, Feng L#, Yu Y, Wang L, Wang P, Yu L, Wang J, Hou J, Berrueta D, Lee D, Speidel T, Ma L, Kim T, Yisimayi A, Song W, Wang J, Liu L, Yang S, Niu X, Xiao T, An R, Wang Y, Shao F, Wang Y, Pecetta S, Wang X*, Walker L*, Cao Y*. Rational identification of SARS-CoV-2 broadly neutralizing antibodies via accurate viral evolution prediction. Nature Microbiology. 2025.
4. Chen Z#, Feng L#, Wang L#, Zhang L#, Zheng B#, Fu H, Li F, Liu L, Lv Q, Deng R, Xu Y, Hu Y, Zheng J, Qin C, Bao L*, Wang X*, Jin Q*. A broadly neutralizing antibody against the SARS-CoV-2 Omicron sub-variants BA.1, BA.2, BA.2.12.1, BA.4, and BA.5. Signal Transduct Target Ther. 2025;10(1):14.
2024年度
5. Liu P#, Yue C#, Meng B#, Xiao T, Yang S, Liu S, Jian F, Zhu Q, Yu Y, Ren Y, Wang P, Li Y, Wang J, Mao X, Shao F, Wang Y, Gupta RK*, Cao Y*, Wang X*. Spike N354 glycosylation augments SARS-CoV-2 fitness for human adaptation through structural plasticity. National Science Review. 2024;11(7).
6. Yue C#, Liu S#, Meng B#, Fan K#, Yang S#, Liu P, Zhu Q, Mao X, Yu Y, Shao F, Wang P, Wang Y, Gupta RK, Cao Y, Wang X*. Deletion of V483 in the spike confers evolutionary advantage on SARS-CoV-2 for human adaptation and host-range expansion after a prolonged pandemic. Cell Research. 2024;34(10):739-742.
7. Zhu Q#, Liu P#, Liu S#, Yue C*, Wang X*. Enhancing RBD exposure and S1 shedding by an extremely conserved SARS-CoV-2 NTD epitope. Signal Transduct Target Ther. 2024;9(1):217.
8. Jia Z#, Wang K#, Xie M#, Wu J#, Hu Y#, Zhou Y*, Yisimayi A, Fu W, Wang L, Liu P, Fan K, Chen R, Wang L, Li J, Wang Y, Ge X, Zhang Q, Wu J, Wang N, Wu W, Gao Y, Miao J, Jiang Y, Qin L, Zhu L, Huang W, Zhang Y, Zhang H, Li B, Gao Q, Xie XS*, Wang Y*, Cao Y*, Wang Q*, Wang X*. A third dose of inactivated vaccine augments the potency, breadth, and duration of anamnestic responses against SARS-CoV-2. Protein Cell. 2024;15(12):930-937.
9. Feng L#, Sun Z#, Zhang Y#, Jian F, Yang S, Xia K, Yu L, Wang J, Shao F, Wang X*, Cao Y*. Structural and molecular basis of the epistasis effect in enhanced affinity between SARS-CoV-2 KP.3 and ACE2. Cell Discovery. 2024;10(1):123.
10. Wang Y#, Zhang Z#, Yang M#, Xiong X#, Yan Q, Cao L, Wei P, Zhang Y, Zhang L, Lv K, Chen J, Liu X, Zhao X, Xiao J, Zhang S, Zhu A, Gan M, Zhang J, Cai R, Zhuo J, Zhang Y, Rao H, Qu B, Zhang Y, Chen L, Dai J, Cheng L, Hu Q, Chen Y, Lv H, So RTY, Peiris M, Zhao J, Liu X, Mok CKP*, Wang X*, Zhao J*,. Identification of a broad sarbecovirus neutralizing antibody targeting a conserved epitope on the receptor-binding domain. Cell Rep. 2024;43(1):113653.
11. Zhao D#, Wang N#, Feng X#, Zhang Z#, Xu K, Zheng T, Yang Y, Li X, Ou X, Zhao R, Rao Z*, Bu Z*, Chen Y*, Wang X*. Transcription regulation of African swine fever virus: dual role of M1249L. Nature Communications. 2024;15(1):10058.
12. Yang D#, Wang N#, Du B#, Sun Z, Wang S, He X, Wang J, Zheng T, Chen Y, Wang X*, Wang J*. Structural insights into Semiliki forest virus receptor binding modes indicate novel mechanism of virus endocytosis. PLoS Pathog. 2024;20(12):e1012770.
13. Li H#, Liu P#, Dong H#, Dekker A, Harmsen MM, Guo H, Wang X*, Sun S*. Foot-and-mouth disease virus antigenic landscape and reduced immunogenicity elucidated in atomic detail. Nature Communications. 2024;15(1):8774.
14. Yu Q#, Liang D#, Fu W#, Zhang L#, Wang J#, Zhang Z#, Sun Y, Zhu D, Zheng B, Zhu L, Xiang Y, Zhao D*, Wang X*. p72 antigenic mapping reveals a potential supersite of vulnerability for African swine fever virus. Cell Discovery. 2024;10(1):80.
15. Liu J#, Zheng T#, Xu L#, Chen Z, Zhang K, Wang X, Xu X*, Li Y*, Sun Y*, Zhu L*. An improved method for the detection of double-stranded RNA suitable for quality control of mRNA vaccines. Protein & Cell. 2024;15(11):791-795.
2023年度
16. Yue C#, Song W#, Wang L, Jian F, Chen X, Gao F, Shen Z, Wang Y, Wang X*, Cao Y*. ACE2 binding and antibody evasion in enhanced transmissibility of XBB. 1.5. The Lancet Infectious Diseases. 2023;23(3):278-280.
17. Ou X#, Xu G#, Li P#, Liu Y#, Zan F, Liu P, Hu J, Lu X, Dong S, Zhou Y, Mu Z, Wu Z, Wang J, Jin Q, Liu P, Lu J, Wang X*, Qian Z*. Host susceptibility and structural and immunological insight of S proteins of two SARS-CoV-2 closely related bat coronaviruses. Cell Discovery. 2023;9(1):78.
18. Jian F#, Feng L#, Yang S#, Yu Y#, Wang L, Song W, Yisimayi A, Chen X, Xu Y, Wang P, Yu L, Wang J, Liu L, Niu X, Wang J, Xiao T, An R, Wang Y, Gu Q, Shao F, Jin R, Shen Z, Wang Y, Wang X*, Cao Y*. Convergent evolution of SARS-CoV-2 XBB lineages on receptor-binding domain 455-456 synergistically enhances antibody evasion and ACE2 binding. PLOS Pathogens. 2023;19(12):e1011868.
19. Li S#, Wu J#, Jiang W#, He H#, Zhou Y#, Wu W#, Gao Y#, Xie M#, Xia A, He J, Zhang Q, Han Y, Wang N, Zhu G, Wang Q, Zhang Z, Mayer CT, Wang K, Wang X*, Wang J*, Chen Z*, Jiang S*, Sun L*, Xia R*, Wang Q*. Characterization of cross-reactive monoclonal antibodies against SARS-CoV-1 and SARS-CoV-2: Implication for rational design and development of pan-sarbecovirus vaccines and neutralizing antibodies. J Med Virol. 2023;95(2):e28440.
20. Cui Z#, Luo W#, Chen R#, Li Y#, Wang Z#, Liu Y#, Liu S, Feng L, Jia Z, Cheng R, Tang J, Huang W, Zhang Y, Liu H, Wang X*, Li W. Comparing T- and B-cell responses to COVID-19 vaccines across varied immune backgrounds. Signal Transduction and Targeted Therapy. 2023;8(1):179.
21. Dou Y#*, Xu K#, Deng YQ#, Jia Z#, Lan J#, Xu X#, Zhang G, Cao T, Liu P, Wang X, Wang X, Xu L, Du P, Qin CF, Liu H*, Li Y*, Wu G*, Wang K*, Lu B*. Development of neutralizing antibodies against SARS-CoV-2, using a high-throughput single-B-cell cloning method. Antib Ther. 2023;6(2):76-86.
2022年度
22. Cui Z#, Liu P#, Wang N#, Wang L#, Fan K#, Zhu Q#, Wang K#, Chen R, Feng R, Jia Z, Yang M, Xu G, Zhu B, Fu W, Chu T, Feng L, Wang Y, Pei X, Yang P, Xie XS, Cao L*, Cao Y*, Wang X*. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron, Cell, 2022, 185(5): 860-871
23. Wang K#, Jia Z#, Bao L#, Wang L#, Cao L#, Chi H#, Hu Y#, Li Q#, Jiang Y, Zhu Q, Deng Y, Liu P, Wang N, Wang L, Liu M, Li Y, Zhu B, Fan K, Fu W, Yang P, Pei X, Cui Z, Qin L, Ge P, Wu J, Liu S, Chen Y, Huang W, Qin CF*, Wang Y*, Qin C*, Wang X*. Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants, Nature, 2022, 603(7903): 919-925
24. Xiong Q#, Cao L#, Ma C#, Tortorici M#, Liu C, Si J, Liu P, Gu M, Walls A, Wang C, Shi L, Tong F, Huang M, Li J, Zhao C, Shen C, Chen Y, Zhao H, Lan K, Corti D, Veesler D*, Wang X*, Yan H*. Close relatives of MERS-CoV in bats use ACE2 as their functional receptors, Nature, 2022, 612(7941):748-757
25. Cao Y#, Yisimayi A#, Jian F#, Song W#, Xiao T#, Wang L#, Du S#, Wang J#, Li Q#, Chen X#, Yu Y#, Wang P, Zhang Z, Liu P, An R, Hao X, Wang Y, Wang J, Feng R, Sun H, Zhao L, Zhang W, Zhao D, Zheng J, Yu L, Li C, Zhang N, Wang R, Niu X, Yang S, Song X, Chai Y, Hu Y, Shi Y, Zheng L, Li Z, Gu Q, Shao F, Huang W, Jin R, Shen Z*, Wang Y*, Wang X*, Xiao J*, Xie XS*. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection, Nature, 2022, 608(7923): 593-602
26.Yue C#, Song W#, Wang L, Jian F, Chen X, Gao F, Shen Z, Wang Y, Wang X*, Cao Y*. Enhanced transmissibility of XBB.1.5 is contributed by both strong ACE2 binding and antibody evasion, Lancet Infectious Diseases, 2022, accepted
27. Zhang Y#, Liang D#, Yuan F, Yan Y, Wang Z, Liu P, Yu Q, Zhang X, Wang X*, Zheng A*. Replication is the key barrier during the dual-host adaptation of mosquito-borne flaviviruses, PNAS, 2022, 119(12): e2110491119
28. Cao Y#*, Song W#, Wang L#, Liu P#, Yue C#, Jian F#, Yu Y, Yisimayi A, Wang P, Wang Y, Zhu Q, Deng J, Fu W, Yu L, Zhang N, Wang J, Xiao T, An R, Wang J, Liu L, Zhang N, Wang J, Xiao T, An R, Wang J, Liu L, Yang S, Niu X, Gu Q, Shao F,Hao X,Meng B, Gupta. R, Jin R, Wang Y, Xie X*, Wang X*. Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75, Cell host & microbe, 2022, 30: 1-13
29. Wang L#, Fu W#, Bao L#, Jia Z#, Zhang Y#, Zhou Y#, Wu W, Wu J, Zhang Q, Gao Y, Wang K, Wang Q*, Qin C*, Wang X*. Selection and structural bases of potent broadly neutralizing antibodies from 3-dose vaccinees that are highly effective against diverse SARS-CoV-2 variants, including Omicron sublineages, Cell Research, 2022, 32(7):691-694
30. Li Q#, Zhang L#, Liang Z#, Wang N#, Liu S#, Li T, Yu Y, Cui Q, Wu X, Nie J, Wu J, Cui Z, Lu Q, Wang X*, Huang W*, Wang Y*. Cross-reactivity of eight SARS-CoV-2 variants rationally predicts immunogenicity clustering in sarbecoviruses, Signal Transduct Target Ther, 2022 , 7(1): 256
31. Deng W#, Lv Q#, Li F#, Liu J#, Song Z#, Qi F, Wei Q, Yu P, Liu M, Zhou S, Zhang Y, Gao H, Wang N, Jia Z, Gao K, Liu J, Xiao C, Shang H, Wang X*, Bao L*, Qin C*. Sequential immunizations confer cross-protection against variants of SARS-CoV-2, including Omicron in Rhesus macaques,Signal Transduction and Targeted Therapy,2022, 7(1): 124
32. Li X#, Cui Z#,Hang F#, Chen Q#, Cao L#, Qiu H, Zhang N, Xu Y, Zhang R, Zhou C, Ye Q, Deng Y, Guo Y, Qin S, Fan K, Wang L, Jia Z, Cui Y*, Wang X*, Qin C*. A highly immunogenic live-attenuated vaccine candidate prevents SARS-CoV-2 infection and transmission in hamsters, Innovation (N Y), 2022, 3(2): 100221
33. Liu S#, Jia Z#, Nie J#, Liang Z#, Xie J, Wang L, Zhang L, Wang X*, Wang Y*, Huang W*. A broader neutralizing antibody against all the current VOCs and VOIs targets unique epitope of SARS-CoV-2 RBD, Cell Discovery, 2022, 8(1): 81
34. Yang P#, Shi D#, Fu J, Zhang L, Chen R, Zheng B, Wang X, Xu S*, Zhu L*, Wang K*. Atomic Structures of Coxsackievirus B5 Provide Key Information on Viral Evolution and Survival, J Virol, 2022, 96(9): e0010522
35. Chi H#, Wang L#, Liu C#, Cheng X#, Zheng H#, Lv L, Tan Y, Zhang N, Zhao S, Wu M, Luo D, Qiu H, Feng R, Fu W, Zhang J, Xiong X, Zhang Y, Zu S, Chen Q, Ye Q, Yan X, Hu Y, Zhang Z, Yan R, Yin J, Lei P, Wang W, Lang G*, Shao J*, Deng Y*, Wang X*, Qin C*. An Engineered IgG-VHH Bispecific Antibody against SARS-CoV-2 and Its Variants,Small Methods, 2022,6(12): e2200932
36. Wang M#, Sun Z#, Cui C#, Wang S, Yang D, Shi Z, Wei X, Wang P, Sun W, Zhu J, Li J, Du B, Liu Z, Wei L, Liu C, He X, Wang X*, Zhang X*, Wang J*. Structural Insights into Alphavirus Assembly Revealed by the Cryo-EM Structure of Getah Virus, Viruses, 2022, 14(2): 327
2021年度
37. Cao Y#, Wang J#, Jian F#, Xiao T#, Song W#, Yisimayi A#, Huang W#, Li Q, Wang P, An R, Wang J, Wang Y, Niu X, Yang S, Liang H, Sun H, Li T, Yu Y, Cui Q, Liu S, Yang X, Du S, Zhang Z, Hao X, Shao F, Jin R, Wang X*, Xiao J*, Wang Y*, Xie XS*. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies, Nature, 2021, https://doi.org/10.1038/s41586-021-04385-3
38. Guo Q.#, Zhao Y.#, Li J.#, Liu J.#, Yang X.#, Guo X., Kuang M., Xia H., Zhang Z., Cao L., Luo Y., Bao L., Wei X., Deng W., Wang N., Chen L., Chen J., Zhu H., Gao R., Qin, C.*, Wang X.*, You F.*. Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19, Cell Host and Microbe, 2021, https://doi.org/10.1016/ j.chom.2020.12.016
39. Zhu L#, Deng Y#, Zhang R#, Cui Z#, Sun C#, Fan C#, Xing X#, Huang W, Chen Q, Zhang N, Ye, Q, Cao T, Wang N, Wang L, Cao L, Wang H, Kong D, Ma J, Luo C, Zhang Y, Nie J, Sun Y, Lv Z, Shaw N, Li Q, Li X, Hu J, Xie L*, Rao Z*, Wang Y*, Wang X*, Qin C*. Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2, National Science Review, 2021, nwaa297
40. Zhang L#, Cao L#, Gao X#, Zheng B#, Deng Y#, Li J#, Feng R, Bian Q, Guo X, Wang N, Qiu H, Wang L, Cui Z, Ye Q, Chen G, Lu K, Chen Y, Chen Y, Pan H, Yu J, Yao W, Zhu B, Chen J, Liu Y, Qin C*, Wang X*, Zhu F*. A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2, National Science Review, 2021, nwab053
41. Sun S#, Gu H#, Cao L#, Chen Q#, Ye Q, Yang G, Li R, Fan H, Deng Y, Song X, Qi Y, Li M, Lan J, Feng R, Guo Y, Zhu N, Qin S, Wang L, Zhang Y, Zhou C, Zhao L, Chen Y, Shen M, Cui Y, Yang X, Wang X, Tan W, Wang H*, Wang X*, Qin C*. Characterization and structural basis of a lethal mouse-adapted SARS-CoV-2, Nat Commun, 2021,12(1), 5654
42. Tai L#, Zhu G#, Yang M#, Cao L, Xing X, Yin G, Chan C, Qin C, Rao Z, Wang X*, Sun F*, Zhu Y*. Nanometer resolution in situ structure of the SARS-CoV-2 postfusion spike protein, PNAS, 2021, 118 (48), e2112703118
43. Zhao Y#, Kuang M#, Li J#, Zhu L#, Jia Z, Guo X, Hu Y, Kong J, Yin H, Wang X*, You F*. SARS-CoV-2 spike protein interacts with and activates TLR4, Cell Research, 2021, 31: 818-820
44. Sun Y#, Wang L#, Feng R#, Wang N#, Wang Y#, Zhu D#, Xing X, Yang P, Zhang Y*, Li W*, Wang X*. Structure-based development of three- and four-antibody cocktails against SARS-CoV-2 via multiple mechanisms, Cell Research, 2021, 31, 597-600
45. Feng R#, Wang L#, Shi D#, Zheng B, Zhang L, Hou H, Xia D, Cui L, Wang X*, Xu S*, Wang K*, Zhu L*. Structural basis for neutralization of an anicteric hepatitis associated echovirus by a potent neutralizing antibody, Cell Discovery, 2021, 7: 35
46. Dong H.#, Liu P.#, Bai M.#, Wang K.#, Feng R.#, Zhu D., Sun Y., Mu S., Li H., Michiel H., Sun, S.*, Wang X.*, Guo H.*. Structural and molecular basis for foot-and-mouth disease virus neutralization by two potent protective antibodies, Protein & Cell, 2021
2020年度
47. Yao H#, Sun Y#, Deng Y#, Wang N#, Tan Y#, Zhang N#, Li X, Kong C, Xu Y, Chen Q, Cao T, Zhao H, Yan X, Cao L, Lv Z, Zhu D, Feng R, Wu N, Zhang W, Hu Y, Chen K, Zhang R, Lv Q, Sun S, Zhou Y, Yan R, Yang G, Sun X, Liu C, Lu X, Cheng L, Qiu H, Huang X, Weng T, Shi D, Jiang W, Shao J, Wang L, Zhang J, Jiang T, Lang G*, Qin C*, Li L*, Wang X*. Rational Development of a Human Antibody Cocktail that Deploys Multiple Functions to Confer Pan-SARS-CoVs Protection, Cell Research, 2020, 10.1038/s41422-020-00444-y
48. Wang N#, Sun Y#, Feng R#, Wang Y#, Guo Y#, Zhang L#, Deng Y, Wang L, Cui Z, Cao L, Zhang Y, Li W*, Zhu F*, Qin C*, Wang X*. Structure-based development of human antibody cocktails against SARS-CoV-2, Cell Research, 2020, 10.1038/s41422-020-00446-w
49. Zhang Y#, Zeng G#, Pan H#, Li C#, Hu Y, Chu K, Han W, Chen Z, Tang R, Yin W, Chen X, Hu Y, Liu X, Jiang C, Li J, Yang M, Song Y, Wang X, Gao Q*, Zhu F*. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial, The Lancet Infectious Diseases, 2020, 10.1016/ S1473-3099(20)30870-7
50. Lv Z#, Deng Y#, Ye Q#, Cao L#, Sun C#, Fan C#, Huang W, Sun S, Sun Y, Zhu L, Chen Q, Wang N, Nie J, Cui Z, Zhu D, Shaw N, Li X, Li Q, Xie L*, Wang Y*, Rao Z*, Qin C*, Wang X*. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody, Science, 2020, 369(6510):1505-1509
51. Gao Q#, Bao L#, Mao H#, Wang L#, Xu K#, Yang M#, Li Y, Zhu L, Wang N, Zhe Lv, Gao H, Ge X, Kan B, Hu Y, Liu J, Cai F, Jiang D, Yin Y, Qin C, Li J, Gong X, Lou X, Shi W, Wu D, Zhang H, Zhu L, Deng W, Li Y, Lu J*, Li C*, Wang X*, Yin W*, Zhang Y*, Qin Q*. Development of an inactivated vaccine candidate for SARS-CoV-2, Science, 2020,369(6499):77-81
52. Wang K#, Zhu L#, Sun Y#, Li M, Zhao X, Cui L, Zhang L, George F. Gao, Zhai W, Zhu F*, Rao Z, Wang X*. Structures of Echovirus 30 in complex with its receptors inform a rational prediction for enterovirus receptor usage. Nature Communications, 11, 4421 (2020).
53. Wang K#, Zheng B#, Zhang L#, Cui L, Su X, Zhang Q, Guo Z, Guo Y, Zhang W, Zhu L*, Zhu F*, Rao Z*, Wang X*. Serotype specific epitopes identified by neutralizing antibodies underpin immunogenic differences in Enterovirus B. Nature Communications, 11, 4419 (2020)
54. Yang Y#, Yang P#, Wang N, Chen Z, Su D, Zhou ZH, Rao Z*, Wang X*. Architecture of the herpesvirus genome-packaging complex and implications for DNA translocation, Protein & Cell, 11, 339-351 (2020).
55. Wang N#, Chen W#, Zhu L#, Zhu D, Feng R, Wang J, Zhu B, Zhang X, Chen X, Liu X, Yan R, Ni D, Grace Zhou G, Liu H*, Rao Z*, Wang X*. Structures of the portal vertex reveal essential protein-protein interactions for Herpesvirus assembly and maturation. Protein & Cell, 11, 366-373 (2020)
56. Zhang M, Wang Y, He W, Sun Y, Guo Y, Zhong W, Gao Q, Liao M, Wang X, Cai Y*, Guo Y*, and Rao Z. Design, Synthesis, and Evaluation of Novel Enterovirus 71 Inhibitors as Therapeutic Drug Leads for the Treatment of Human Hand, Foot, and Mouth Disease,J. Med. Chem., 2020, 63, 3, 1233-1244
57. Zhao Y, Zhou D, Ni T, Karia D, Kotecha A, Wang X, Rao Z, Jones Y, Fry E.E, Ren J, Stuart D. Hand-foot-and-mouth disease virus receptor KREMEN1 binds the canyon of Coxsackie Virus A10. Nature Communications, 11, 38 (2020).
2019年度
58. Wang N#, Zhao D#, Wang J#, Zhang Y#, Wang M, Gao Y, Li F, Wang J, Bu Z*, Rao Z*, Wang X*. Architecture of African swine fever virus and implications for viral assembly, Science, 2019, 366(6465): 640-644
59. Cao L#, Liu P#, Yang P, Gao Q, Li H, Sun Y, Zhu L, Lin J, Dan S*, Rao Z*, Wang X*. Structural basis for neutralization of hepatitis A virus informs a rational design of highly potent inhibitors, PLoS Biology, 2019,17(4): e3000229
60. Colibus L.D, Roine E, Walter T.S, Ilca S.L, Wang X, Wang N, Roseman A.M, Bamford D., Huiskonen J.T, Stuart D.I. Assembly of complex viruses exemplified by a halophilic euryarchaeal virus, Nature Communications, 10, 1456 (2019).
61. Zhou D, Zhao Y, Kotecha A, Fry E.E, Kelly J.T, Wang X, Rao Z, Rowlands D.J, Ren J, Stuart D.I. Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nature Microbiology, 4, 414-419 (2019).
62. Lu X, Xiao H, Li S, Pang X, Song J, Liu S, Cheng H, Li Y, Wang X, Huang C, Guo T, Ter Meulen J, Daffis S, Yan J, Dai L, Rao Z, Klenk HD, Qi J, Shi Y, Gao GF. Double Lock of a Human Neutralizing and Protective Monoclonal Antibody Targeting the Yellow Fever Virus Envelope. Cell Reports. 2019 Jan 8;26(2):438-446.e5.
2018年度
63. Yuan S#, Wang J#, Zhu D#, Wang N, Gao Q, Chen W, Wang J*, Zhang X*, Liu H*, Rao Z*, Wang X*. Cryo-EM structure of a Herpesvirus capsid at 3.1 Å, Science, 2018, 360 (6384): 48-58
64. Zhu L#*, Sun Y#, Fan J#, Zhu B, Cao L, Gao Q, Zhang Y*, Liu H, Rao Z*, Wang X*. Structures of Coxsackievirus A10 unveil the molecular mechanisms of receptor binding and viral uncoating, Nature Communications, 2018, 9: 4985
65. Wang J#, Yuan S#, Zhu D#, Tang H, Wang N, Chen W, Gao Q, Li Y, Wang J, Liu H*, Zhang X*, Rao Z*, Wang X*. Structure of the herpes simplex virus type 2 C-capsid with capsid-vertex-specific component, Nature Communications, 2018, 9: 3668
66. Qiu X#, Lei Y#, Yang P, Gao Q, Wang N, Cao L, Yuan S, Huang X, Deng Y, Ma W, Ding T, Zhang F, Wu X, Hu J, Liu S, Qin C, Wang X*, Xu Z*, Rao Z*. Structural basis for neutralization of Japanese encephalitis virus by two potent therapeutic antibodies, Nature Microbiology, 2018, 3: 287-294
67. Huo Y#*, Li T, Wang N, Dong Q, Wang X*, Jiang T*. Cryo-EM structure of Type III-A CRISPR effector complex, Cell Research, 2018, 28: 1195-1197
68. Zhu L#, Xu K#, Wang N#, Cao L, Wu J, Gao Q, Fry E.E, Stuart D.I, Rao Z, Wang J, Wang X*. Neutralization Mechanisms of Two Highly Potent Antibodies against Human Enterovirus 71, mBio, 2018, 9: e01013-18
69. Zhu D, Wang X, Fang Q, Van Etten J, Rossmann M.G, Rao Z, Zhang X. Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions. Nature Communications, 9, 1552 (2018).
70. Xie DY, Liu ZY, Nian QG, Zhu L, Wang N, Deng YQ, Zhao H, Ji X, Li XF, Wang X, Shi PY, Qin CF. A single residue in the αB helix of the E protein is critical for Zika virus thermostability. Emerging Microbes & Infections. 2018 Jan 24;7(1):5
2017年度及以前
71. Wang X#*, Zhu L#, Dang M#, Hu Z#, Gao Q, Yuan S, Sun Y, Zhang B, Ren J, Kotecha A, Walter T.S, Wang J*. Fry E.E*, Stuart D.I*, Rao Z*, Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site, Proc.Natl.Acad.Sci.USA, 2017, 114: 770~775
72. Wang X#*, Li S#, Zhu L#, Nian Q#, Yuan S, Gao Q, Hu Z, Ye Q, Li X, Xie D, Shaw N, Wang J, Walter T.S, Huiskonen J.T, Fry E.E, Qin C*, Stuart D.I*, Rao Z*. Near-atomic structure of Japanese encephalitis virus reveals critical determinants of virulence and stability, Nature Communications, 2017, 8: 14
73. Yuan L, Huang X, Liu Z, Zhang F, Zhu X, Yu J, Ji X, Xu Y, Li G, Li C, Wang H, Deng Y, Wu M, Cheng M, Ye Q, Xie D, Li X, Wang X, Shi W, Hu B, Shi P, Xu Z, Qin C. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science, 17 2017: 933-936
74. Zhang X#, Yang P#, Wang N, Zhang J, Li J, Guo H, Yin X, Rao Z, Wang X*, Zhang L*. The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection, Protein & Cell, 2017, 8: 590-600
75. Zhu L#, Wang X#, Ren J, Kotecha A, Walter T.S, Yuan S, Yamashita T, Tuthill T.J, Fry E.E, Rao Z*, Stuart D.I*. Structure of human Aichi virus and implications for receptor binding, Nature Microbiology, 2016, 1: 16150
76. Wang X#, Ren J#, Gao Q#, Hu Z, Sun Y, Li X, Rowlands D.J, Yin W, Wang J*, Stuart D.I*, Rao Z*, Fry E.E. Hepatitis A virus and the origins of picornaviruses, Nature, 2015, 517: 85-88
77. Zhu L#, Wang X#, Ren J, Porta C, Wenham H, Ekstrom J.O, Panjwani A, Knowles N.J, Kotecha A, Siebert A.C, Lindberg M, Fry E.E, Rao Z, Tuthill T.J, Stuart D.I*. Structure of Ljungan virus provides insight into genome packaging of this picornavirus, Nature Communications, 2015, 6: 8316
78. Colibus L.D#, Wang X#, Tijsma A, Neyts J, Spyrou J.A, Ren J, Grimes j.M, Puerstinger G, Leyssen P, Fry E.E, Rao Z*, Stuart D.I*. Structure Elucidation of Coxsackievirus A16 in Complex with GPP3 Informs a Systematic Review of Highly Potent Capsid Binders to Enteroviruses, PLoS Pathog, 2015, 11: e1005165
79. Ren J, Wang X, Zhu L, Hu Z, Gao Q, Yang P, Li X, Wang J, Shen X, Fry E.E, Rao Z*, Stuart D.I*. Structures of Coxsackievirus A16 Capsids with Native Antigenicity: Implications for Particle Expansion, Receptor Binding, and Immunogenicity, Journal of Virology, 2015, 89: 10500-10511
80. Yuan S#, Cao L, Ling H, Dang M, Sun Y, Zhang X, Chen Y, Zhang L, Su D, Wang X*, Rao Z*. TIM-1 acts a dual-attachment receptor for Ebolavirus by interacting directly with viral GP and the PS on the viral envelope, Protein & Cell, 2015, 6: 814-824
81. Colibus D.L#, Wang X#, Spyrou J.A, Kelly J, Ren J, Grimes J.M, Puerstinger G, Stonehouse N, Walter T.S, Hu Z, Wang J, Li X, Peng W, Rowlands D.J, Fry E.E., Rao Z*, Stuart D.I*. More-powerful virus inhibitors from structure-based analysis of HEV71 capsid-binding molecules, Nature Structural & Molecular Biology, 2014, 21: 282-288
82. Dang M#, Wang X#, Wang Q, Wang Y, Lin J, Sun Y, Li X, Zhang L, Lou Z, Wang J, Rao Z*. Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71, Protein & Cell, 2014, 5: 692-703
83. Ren J#, Wang X#, Hu Z, Gao Q, Sun Y, Li X, Porta C, Walter T.S, Gilbert R.J, Zhao Y, Axford D, Williams M, McAuley K, Rowlands D.J, Yin W, Wang J*, Stuart D.I*, Rao Z, Fry.E.E. Picornavirus uncoating intermediate captured in atomic detail, Nature Communications, 2013, 4: 1929
84. Wang L, Li J, Wang X, Liu W, Zhang XC, Li X, Rao Z. Structure analysis of the extracellular domain reveals disulfide bond forming-protein properties of Mycobacterium tuberculosis Rv2969c. Protein & Cell. 2013 Aug;4(8):628-40.
85. Sun Y#, Wang X#, Yuan S, Dang M, Li X, Zhang X, Rao Z*. An open conformation determined by a structural switch for 2A protease from coxsackievirus A16, Protein & Cell, 2013, 4: 782-792
86. Wang X#, Peng W#, Ren J#, Hu Z, Xu J, Lou Z, Li X, Yin W, Shen X, Porta C, Walter T.S, Evans G, Axford D, Owen R, Rowlands D.J, Wang J*, Stuart D.I*, Fry E.E*, Rao Z*. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71, Nature Structural & Molecular Biology, 2012, 19: 424-429
87. Xu J, Peng W, Sun Y, Wang X, Xu Y, Li X, Gao G, Rao Z. Structural study of MCPIP1 N-terminal conserved domain reveals a PIN-like RNase. Nucleic Acids Res. 2012 Aug;40(14):6957-65.
(From Xiangxi Wang, February 19, 2025)