Xiangxi Wang, Ph.D, Prof.
-
Principal Investigator
Chinese Academy of Sciences Key Laboratory of Infection and Immunity, IBP
Research Interests: Innate immunity and host-pathogen interaction
Email: xiangxi@ibp.ac.cn
Tel: 010-64888806
Address: 15 Datun Road, Chaoyang District, Beijing, 100101, China
Chinese personal homepage
- Biography
2005.09 - 2009.06 B.S., School of Life Science, Sichuan University
2009.09 - 2014.06 Ph.D., Institute of Biophysics, Chinese Academy of Sciences
2014.07 - 2014.10 Associate professor, Institute of Biophysics, Chinese Academy of Sciences
2014.07 - 2016.03 Academic visitor, University of Oxford
2014.11 - Professor, Institute of Biophysics, China
- Awards
2015 4th BeiShizhang Young Biophysicist Award
1st Young Elite scientist sponsorship by CAST
2014 Young professor sponsorship, Institute of Biophysics
Ray Wu Scholarship
2011 17th International Biophysics Congress Young Scientist Award
- Membership in Academies & Societies
- Research Interests
Viral diseases are serious public health threats and have caused considerable concern over public health safety. Despite outnumbering all other cellular forms of life, our knowledge of the viral life cycle remains limited. During the viral life cycle, most viruses undergo a series of conformational changes from the immature to the mature, uncoatingor fusogenic form of the virion. In the infected cells, newly assembled immature viruses mature via structural transformations triggered by limited proteolysis or acidic pH or host factors. The virus systems selected are representatives from three families of virus that we have studied for several years, the Picornaviridae, Flaviviridae and Herpesviradae. My research aims to completely understand the various steps of the virus cycle, including the entry, replication and assembly using a combination of structural analysis, cellular assays, virological, reverse genetics and animal studies. The study of virus cycle facilitates the design of better antiviral compounds and vaccines, which is in agreement with our commitment to translate our research findings into health benefits.
- Grants
- Selected Publications
2022年度
1. Cui Z#, Liu P#, Wang N#, Wang L#, Fan K#, Zhu Q#, Wang K#, Chen R, Feng R, Jia Z, Yang M, Xu G, Zhu B, Fu W, Chu T, Feng L, Wang Y, Pei X, Yang P, Xie XS, Cao L*, Cao Y*, Wang X*. Structural and functional characterizations of infectivity and immune evasion of SARS-CoV-2 Omicron, Cell, 2022, 185(5): 860-871
2. Wang K#, Jia Z#, Bao L#, Wang L#, Cao L#, Chi H#, Hu Y#, Li Q#, Jiang Y, Zhu Q, Deng Y, Liu P, Wang N, Wang L, Liu M, Li Y, Zhu B, Fan K, Fu W, Yang P, Pei X, Cui Z, Qin L, Ge P, Wu J, Liu S, Chen Y, Huang W, Qin CF*, Wang Y*, Qin C*, Wang X*. Memory B cell repertoire from triple vaccinees against diverse SARS-CoV-2 variants, Nature, 2022, 603(7903): 919-925
3. Xiong Q#, Cao L#, Ma C#, Tortorici M#, Liu C, Si J, Liu P, Gu M, Walls A, Wang C, Shi L, Tong F, Huang M, Li J, Zhao C, Shen C, Chen Y, Zhao H, Lan K, Corti D, Veesler D*, Wang X*, Yan H*. Close relatives of MERS-CoV in bats use ACE2 as their functional receptors, Nature, 2022, 612(7941):748-757
4. Cao Y#, Yisimayi A#, Jian F#, Song W#, Xiao T#, Wang L#, Du S#, Wang J#, Li Q#, Chen X#, Yu Y#, Wang P, Zhang Z, Liu P, An R, Hao X, Wang Y, Wang J, Feng R, Sun H, Zhao L, Zhang W, Zhao D, Zheng J, Yu L, Li C, Zhang N, Wang R, Niu X, Yang S, Song X, Chai Y, Hu Y, Shi Y, Zheng L, Li Z, Gu Q, Shao F, Huang W, Jin R, Shen Z*, Wang Y*, Wang X*, Xiao J*, Xie XS*. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection, Nature, 2022, 608(7923): 593-602
5.Yue C#, Song W#, Wang L, Jian F, Chen X, Gao F, Shen Z, Wang Y, Wang X*, Cao Y*. Enhanced transmissibility of XBB.1.5 is contributed by both strong ACE2 binding and antibody evasion, Lancet Infectious Diseases, 2022, accepted
6. Zhang Y#, Liang D#, Yuan F, Yan Y, Wang Z, Liu P, Yu Q, Zhang X, Wang X*, Zheng A*. Replication is the key barrier during the dual-host adaptation of mosquito-borne flaviviruses, PNAS, 2022, 119(12): e2110491119
7. Cao Y#*, Song W#, Wang L#, Liu P#, Yue C#, Jian F#, Yu Y, Yisimayi A, Wang P, Wang Y, Zhu Q, Deng J, Fu W, Yu L, Zhang N, Wang J, Xiao T, An R, Wang J, Liu L, Zhang N, Wang J, Xiao T, An R, Wang J, Liu L, Yang S, Niu X, Gu Q, Shao F,Hao X,Meng B, Gupta. R, Jin R, Wang Y, Xie X*, Wang X*. Characterization of the enhanced infectivity and antibody evasion of Omicron BA.2.75, Cell host & microbe, 2022, 30: 1-13
8. Wang L#, Fu W#, Bao L#, Jia Z#, Zhang Y#, Zhou Y#, Wu W, Wu J, Zhang Q, Gao Y, Wang K, Wang Q*, Qin C*, Wang X*. Selection and structural bases of potent broadly neutralizing antibodies from 3-dose vaccinees that are highly effective against diverse SARS-CoV-2 variants, including Omicron sublineages, Cell Research, 2022, 32(7):691-694
9. Li Q#, Zhang L#, Liang Z#, Wang N#, Liu S#, Li T, Yu Y, Cui Q, Wu X, Nie J, Wu J, Cui Z, Lu Q, Wang X*, Huang W*, Wang Y*. Cross-reactivity of eight SARS-CoV-2 variants rationally predicts immunogenicity clustering in sarbecoviruses, Signal Transduct Target Ther, 2022 , 7(1): 256
10. Deng W#, Lv Q#, Li F#, Liu J#, Song Z#, Qi F, Wei Q, Yu P, Liu M, Zhou S, Zhang Y, Gao H, Wang N, Jia Z, Gao K, Liu J, Xiao C, Shang H, Wang X*, Bao L*, Qin C*. Sequential immunizations confer cross-protection against variants of SARS-CoV-2, including Omicron in Rhesus macaques,Signal Transduction and Targeted Therapy,2022, 7(1): 124
11. Li X#, Cui Z#,Hang F#, Chen Q#, Cao L#, Qiu H, Zhang N, Xu Y, Zhang R, Zhou C, Ye Q, Deng Y, Guo Y, Qin S, Fan K, Wang L, Jia Z, Cui Y*, Wang X*, Qin C*. A highly immunogenic live-attenuated vaccine candidate prevents SARS-CoV-2 infection and transmission in hamsters, Innovation (N Y), 2022, 3(2): 100221
12. Liu S#, Jia Z#, Nie J#, Liang Z#, Xie J, Wang L, Zhang L, Wang X*, Wang Y*, Huang W*. A broader neutralizing antibody against all the current VOCs and VOIs targets unique epitope of SARS-CoV-2 RBD, Cell Discovery, 2022, 8(1): 81
13. Yang P#, Shi D#, Fu J, Zhang L, Chen R, Zheng B, Wang X, Xu S*, Zhu L*, Wang K*. Atomic Structures of Coxsackievirus B5 Provide Key Information on Viral Evolution and Survival, J Virol, 2022, 96(9): e0010522
14. Chi H#, Wang L#, Liu C#, Cheng X#, Zheng H#, Lv L, Tan Y, Zhang N, Zhao S, Wu M, Luo D, Qiu H, Feng R, Fu W, Zhang J, Xiong X, Zhang Y, Zu S, Chen Q, Ye Q, Yan X, Hu Y, Zhang Z, Yan R, Yin J, Lei P, Wang W, Lang G*, Shao J*, Deng Y*, Wang X*, Qin C*. An Engineered IgG-VHH Bispecific Antibody against SARS-CoV-2 and Its Variants,Small Methods, 2022,6(12): e2200932
15. Wang M#, Sun Z#, Cui C#, Wang S, Yang D, Shi Z, Wei X, Wang P, Sun W, Zhu J, Li J, Du B, Liu Z, Wei L, Liu C, He X, Wang X*, Zhang X*, Wang J*. Structural Insights into Alphavirus Assembly Revealed by the Cryo-EM Structure of Getah Virus, Viruses, 2022, 14(2): 327
2021年度
16. Cao Y#, Wang J#, Jian F#, Xiao T#, Song W#, Yisimayi A#, Huang W#, Li Q, Wang P, An R, Wang J, Wang Y, Niu X, Yang S, Liang H, Sun H, Li T, Yu Y, Cui Q, Liu S, Yang X, Du S, Zhang Z, Hao X, Shao F, Jin R, Wang X*, Xiao J*, Wang Y*, Xie XS*. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies, Nature, 2021, https://doi.org/10.1038/s41586-021-04385-3
17. Guo Q.#, Zhao Y.#, Li J.#, Liu J.#, Yang X.#, Guo X., Kuang M., Xia H., Zhang Z., Cao L., Luo Y., Bao L., Wei X., Deng W., Wang N., Chen L., Chen J., Zhu H., Gao R., Qin, C.*, Wang X.*, You F.*. Induction of alarmin S100A8/A9 mediates activation of aberrant neutrophils in the pathogenesis of COVID-19, Cell Host and Microbe, 2021, https://doi.org/10.1016/ j.chom.2020.12.016
18. Zhu L#, Deng Y#, Zhang R#, Cui Z#, Sun C#, Fan C#, Xing X#, Huang W, Chen Q, Zhang N, Ye, Q, Cao T, Wang N, Wang L, Cao L, Wang H, Kong D, Ma J, Luo C, Zhang Y, Nie J, Sun Y, Lv Z, Shaw N, Li Q, Li X, Hu J, Xie L*, Rao Z*, Wang Y*, Wang X*, Qin C*. Double lock of a potent human therapeutic monoclonal antibody against SARS-CoV-2, National Science Review, 2021, nwaa297
19. Zhang L#, Cao L#, Gao X#, Zheng B#, Deng Y#, Li J#, Feng R, Bian Q, Guo X, Wang N, Qiu H, Wang L, Cui Z, Ye Q, Chen G, Lu K, Chen Y, Chen Y, Pan H, Yu J, Yao W, Zhu B, Chen J, Liu Y, Qin C*, Wang X*, Zhu F*. A proof of concept for neutralizing antibody-guided vaccine design against SARS-CoV-2, National Science Review, 2021, nwab053
20. Sun S#, Gu H#, Cao L#, Chen Q#, Ye Q, Yang G, Li R, Fan H, Deng Y, Song X, Qi Y, Li M, Lan J, Feng R, Guo Y, Zhu N, Qin S, Wang L, Zhang Y, Zhou C, Zhao L, Chen Y, Shen M, Cui Y, Yang X, Wang X, Tan W, Wang H*, Wang X*, Qin C*. Characterization and structural basis of a lethal mouse-adapted SARS-CoV-2, Nat Commun, 2021,12(1), 5654
21. Tai L#, Zhu G#, Yang M#, Cao L, Xing X, Yin G, Chan C, Qin C, Rao Z, Wang X*, Sun F*, Zhu Y*. Nanometer resolution in situ structure of the SARS-CoV-2 postfusion spike protein, PNAS, 2021, 118 (48), e2112703118
22. Zhao Y#, Kuang M#, Li J#, Zhu L#, Jia Z, Guo X, Hu Y, Kong J, Yin H, Wang X*, You F*. SARS-CoV-2 spike protein interacts with and activates TLR4, Cell Research, 2021, 31: 818-820
23. Sun Y#, Wang L#, Feng R#, Wang N#, Wang Y#, Zhu D#, Xing X, Yang P, Zhang Y*, Li W*, Wang X*. Structure-based development of three- and four-antibody cocktails against SARS-CoV-2 via multiple mechanisms, Cell Research, 2021, 31, 597-600
24. Feng R#, Wang L#, Shi D#, Zheng B, Zhang L, Hou H, Xia D, Cui L, Wang X*, Xu S*, Wang K*, Zhu L*. Structural basis for neutralization of an anicteric hepatitis associated echovirus by a potent neutralizing antibody, Cell Discovery, 2021, 7: 35
25. Dong H.#, Liu P.#, Bai M.#, Wang K.#, Feng R.#, Zhu D., Sun Y., Mu S., Li H., Michiel H., Sun, S.*, Wang X.*, Guo H.*. Structural and molecular basis for foot-and-mouth disease virus neutralization by two potent protective antibodies, Protein & Cell, 2021
2020年度
26. Yao H#, Sun Y#, Deng Y#, Wang N#, Tan Y#, Zhang N#, Li X, Kong C, Xu Y, Chen Q, Cao T, Zhao H, Yan X, Cao L, Lv Z, Zhu D, Feng R, Wu N, Zhang W, Hu Y, Chen K, Zhang R, Lv Q, Sun S, Zhou Y, Yan R, Yang G, Sun X, Liu C, Lu X, Cheng L, Qiu H, Huang X, Weng T, Shi D, Jiang W, Shao J, Wang L, Zhang J, Jiang T, Lang G*, Qin C*, Li L*, Wang X*. Rational Development of a Human Antibody Cocktail that Deploys Multiple Functions to Confer Pan-SARS-CoVs Protection, Cell Research, 2020, 10.1038/s41422-020-00444-y
27. Wang N#, Sun Y#, Feng R#, Wang Y#, Guo Y#, Zhang L#, Deng Y, Wang L, Cui Z, Cao L, Zhang Y, Li W*, Zhu F*, Qin C*, Wang X*. Structure-based development of human antibody cocktails against SARS-CoV-2, Cell Research, 2020, 10.1038/s41422-020-00446-w
28. Zhang Y#, Zeng G#, Pan H#, Li C#, Hu Y, Chu K, Han W, Chen Z, Tang R, Yin W, Chen X, Hu Y, Liu X, Jiang C, Li J, Yang M, Song Y, Wang X, Gao Q*, Zhu F*. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial, The Lancet Infectious Diseases, 2020, 10.1016/ S1473-3099(20)30870-7
29. Lv Z#, Deng Y#, Ye Q#, Cao L#, Sun C#, Fan C#, Huang W, Sun S, Sun Y, Zhu L, Chen Q, Wang N, Nie J, Cui Z, Zhu D, Shaw N, Li X, Li Q, Xie L*, Wang Y*, Rao Z*, Qin C*, Wang X*. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody, Science, 2020, 369(6510):1505-1509
30. Gao Q#, Bao L#, Mao H#, Wang L#, Xu K#, Yang M#, Li Y, Zhu L, Wang N, Zhe Lv, Gao H, Ge X, Kan B, Hu Y, Liu J, Cai F, Jiang D, Yin Y, Qin C, Li J, Gong X, Lou X, Shi W, Wu D, Zhang H, Zhu L, Deng W, Li Y, Lu J*, Li C*, Wang X*, Yin W*, Zhang Y*, Qin Q*. Development of an inactivated vaccine candidate for SARS-CoV-2, Science, 2020,369(6499):77-81
31. Wang K#, Zhu L#, Sun Y#, Li M, Zhao X, Cui L, Zhang L, George F. Gao, Zhai W, Zhu F*, Rao Z, Wang X*. Structures of Echovirus 30 in complex with its receptors inform a rational prediction for enterovirus receptor usage. Nature Communications, 11, 4421 (2020).
32. Wang K#, Zheng B#, Zhang L#, Cui L, Su X, Zhang Q, Guo Z, Guo Y, Zhang W, Zhu L*, Zhu F*, Rao Z*, Wang X*. Serotype specific epitopes identified by neutralizing antibodies underpin immunogenic differences in Enterovirus B. Nature Communications, 11, 4419 (2020)
33. Yang Y#, Yang P#, Wang N, Chen Z, Su D, Zhou ZH, Rao Z*, Wang X*. Architecture of the herpesvirus genome-packaging complex and implications for DNA translocation, Protein & Cell, 11, 339-351 (2020).
34. Wang N#, Chen W#, Zhu L#, Zhu D, Feng R, Wang J, Zhu B, Zhang X, Chen X, Liu X, Yan R, Ni D, Grace Zhou G, Liu H*, Rao Z*, Wang X*. Structures of the portal vertex reveal essential protein-protein interactions for Herpesvirus assembly and maturation. Protein & Cell, 11, 366-373 (2020)
35. Zhang M, Wang Y, He W, Sun Y, Guo Y, Zhong W, Gao Q, Liao M, Wang X, Cai Y*, Guo Y*, and Rao Z. Design, Synthesis, and Evaluation of Novel Enterovirus 71 Inhibitors as Therapeutic Drug Leads for the Treatment of Human Hand, Foot, and Mouth Disease,J. Med. Chem., 2020, 63, 3, 1233-1244
36. Zhao Y, Zhou D, Ni T, Karia D, Kotecha A, Wang X, Rao Z, Jones Y, Fry E.E, Ren J, Stuart D. Hand-foot-and-mouth disease virus receptor KREMEN1 binds the canyon of Coxsackie Virus A10. Nature Communications, 11, 38 (2020).
2019年度
37. Wang N#, Zhao D#, Wang J#, Zhang Y#, Wang M, Gao Y, Li F, Wang J, Bu Z*, Rao Z*, Wang X*. Architecture of African swine fever virus and implications for viral assembly, Science, 2019, 366(6465): 640-644
38. Cao L#, Liu P#, Yang P, Gao Q, Li H, Sun Y, Zhu L, Lin J, Dan S*, Rao Z*, Wang X*. Structural basis for neutralization of hepatitis A virus informs a rational design of highly potent inhibitors, PLoS Biology, 2019,17(4): e3000229
39. Colibus L.D, Roine E, Walter T.S, Ilca S.L, Wang X, Wang N, Roseman A.M, Bamford D., Huiskonen J.T, Stuart D.I. Assembly of complex viruses exemplified by a halophilic euryarchaeal virus, Nature Communications, 10, 1456 (2019).
40. Zhou D, Zhao Y, Kotecha A, Fry E.E, Kelly J.T, Wang X, Rao Z, Rowlands D.J, Ren J, Stuart D.I. Unexpected mode of engagement between enterovirus 71 and its receptor SCARB2. Nature Microbiology, 4, 414-419 (2019).
41. Lu X, Xiao H, Li S, Pang X, Song J, Liu S, Cheng H, Li Y, Wang X, Huang C, Guo T, Ter Meulen J, Daffis S, Yan J, Dai L, Rao Z, Klenk HD, Qi J, Shi Y, Gao GF. Double Lock of a Human Neutralizing and Protective Monoclonal Antibody Targeting the Yellow Fever Virus Envelope. Cell Reports. 2019 Jan 8;26(2):438-446.e5.
2018年度
42. Yuan S#, Wang J#, Zhu D#, Wang N, Gao Q, Chen W, Wang J*, Zhang X*, Liu H*, Rao Z*, Wang X*. Cryo-EM structure of a Herpesvirus capsid at 3.1 Å, Science, 2018, 360 (6384): 48-58
43. Zhu L#*, Sun Y#, Fan J#, Zhu B, Cao L, Gao Q, Zhang Y*, Liu H, Rao Z*, Wang X*. Structures of Coxsackievirus A10 unveil the molecular mechanisms of receptor binding and viral uncoating, Nature Communications, 2018, 9: 4985
44. Wang J#, Yuan S#, Zhu D#, Tang H, Wang N, Chen W, Gao Q, Li Y, Wang J, Liu H*, Zhang X*, Rao Z*, Wang X*. Structure of the herpes simplex virus type 2 C-capsid with capsid-vertex-specific component, Nature Communications, 2018, 9: 3668
45. Qiu X#, Lei Y#, Yang P, Gao Q, Wang N, Cao L, Yuan S, Huang X, Deng Y, Ma W, Ding T, Zhang F, Wu X, Hu J, Liu S, Qin C, Wang X*, Xu Z*, Rao Z*. Structural basis for neutralization of Japanese encephalitis virus by two potent therapeutic antibodies, Nature Microbiology, 2018, 3: 287-294
46. Huo Y#*, Li T, Wang N, Dong Q, Wang X*, Jiang T*. Cryo-EM structure of Type III-A CRISPR effector complex, Cell Research, 2018, 28: 1195-1197
47. Zhu L#, Xu K#, Wang N#, Cao L, Wu J, Gao Q, Fry E.E, Stuart D.I, Rao Z, Wang J, Wang X*. Neutralization Mechanisms of Two Highly Potent Antibodies against Human Enterovirus 71, mBio, 2018, 9: e01013-18
48. Zhu D, Wang X, Fang Q, Van Etten J, Rossmann M.G, Rao Z, Zhang X. Pushing the resolution limit by correcting the Ewald sphere effect in single-particle Cryo-EM reconstructions. Nature Communications, 9, 1552 (2018).
49. Xie DY, Liu ZY, Nian QG, Zhu L, Wang N, Deng YQ, Zhao H, Ji X, Li XF, Wang X, Shi PY, Qin CF. A single residue in the αB helix of the E protein is critical for Zika virus thermostability. Emerging Microbes & Infections. 2018 Jan 24;7(1):5
2017年度及以前
50. Wang X#*, Zhu L#, Dang M#, Hu Z#, Gao Q, Yuan S, Sun Y, Zhang B, Ren J, Kotecha A, Walter T.S, Wang J*. Fry E.E*, Stuart D.I*, Rao Z*, Potent neutralization of hepatitis A virus reveals a receptor mimic mechanism and the receptor recognition site, Proc.Natl.Acad.Sci.USA, 2017, 114: 770~775
51. Wang X#*, Li S#, Zhu L#, Nian Q#, Yuan S, Gao Q, Hu Z, Ye Q, Li X, Xie D, Shaw N, Wang J, Walter T.S, Huiskonen J.T, Fry E.E, Qin C*, Stuart D.I*, Rao Z*. Near-atomic structure of Japanese encephalitis virus reveals critical determinants of virulence and stability, Nature Communications, 2017, 8: 14
52. Yuan L, Huang X, Liu Z, Zhang F, Zhu X, Yu J, Ji X, Xu Y, Li G, Li C, Wang H, Deng Y, Wu M, Cheng M, Ye Q, Xie D, Li X, Wang X, Shi W, Hu B, Shi P, Xu Z, Qin C. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science, 17 2017: 933-936
53. Zhang X#, Yang P#, Wang N, Zhang J, Li J, Guo H, Yin X, Rao Z, Wang X*, Zhang L*. The binding of a monoclonal antibody to the apical region of SCARB2 blocks EV71 infection, Protein & Cell, 2017, 8: 590-600
54. Zhu L#, Wang X#, Ren J, Kotecha A, Walter T.S, Yuan S, Yamashita T, Tuthill T.J, Fry E.E, Rao Z*, Stuart D.I*. Structure of human Aichi virus and implications for receptor binding, Nature Microbiology, 2016, 1: 16150
55. Wang X#, Ren J#, Gao Q#, Hu Z, Sun Y, Li X, Rowlands D.J, Yin W, Wang J*, Stuart D.I*, Rao Z*, Fry E.E. Hepatitis A virus and the origins of picornaviruses, Nature, 2015, 517: 85-88
56. Zhu L#, Wang X#, Ren J, Porta C, Wenham H, Ekstrom J.O, Panjwani A, Knowles N.J, Kotecha A, Siebert A.C, Lindberg M, Fry E.E, Rao Z, Tuthill T.J, Stuart D.I*. Structure of Ljungan virus provides insight into genome packaging of this picornavirus, Nature Communications, 2015, 6: 8316
57. Colibus L.D#, Wang X#, Tijsma A, Neyts J, Spyrou J.A, Ren J, Grimes j.M, Puerstinger G, Leyssen P, Fry E.E, Rao Z*, Stuart D.I*. Structure Elucidation of Coxsackievirus A16 in Complex with GPP3 Informs a Systematic Review of Highly Potent Capsid Binders to Enteroviruses, PLoS Pathog, 2015, 11: e1005165
58. Ren J, Wang X, Zhu L, Hu Z, Gao Q, Yang P, Li X, Wang J, Shen X, Fry E.E, Rao Z*, Stuart D.I*. Structures of Coxsackievirus A16 Capsids with Native Antigenicity: Implications for Particle Expansion, Receptor Binding, and Immunogenicity, Journal of Virology, 2015, 89: 10500-10511
59. Yuan S#, Cao L, Ling H, Dang M, Sun Y, Zhang X, Chen Y, Zhang L, Su D, Wang X*, Rao Z*. TIM-1 acts a dual-attachment receptor for Ebolavirus by interacting directly with viral GP and the PS on the viral envelope, Protein & Cell, 2015, 6: 814-824
60. Colibus D.L#, Wang X#, Spyrou J.A, Kelly J, Ren J, Grimes J.M, Puerstinger G, Stonehouse N, Walter T.S, Hu Z, Wang J, Li X, Peng W, Rowlands D.J, Fry E.E., Rao Z*, Stuart D.I*. More-powerful virus inhibitors from structure-based analysis of HEV71 capsid-binding molecules, Nature Structural & Molecular Biology, 2014, 21: 282-288
61. Dang M#, Wang X#, Wang Q, Wang Y, Lin J, Sun Y, Li X, Zhang L, Lou Z, Wang J, Rao Z*. Molecular mechanism of SCARB2-mediated attachment and uncoating of EV71, Protein & Cell, 2014, 5: 692-703
62. Ren J#, Wang X#, Hu Z, Gao Q, Sun Y, Li X, Porta C, Walter T.S, Gilbert R.J, Zhao Y, Axford D, Williams M, McAuley K, Rowlands D.J, Yin W, Wang J*, Stuart D.I*, Rao Z, Fry.E.E. Picornavirus uncoating intermediate captured in atomic detail, Nature Communications, 2013, 4: 1929
63. Wang L, Li J, Wang X, Liu W, Zhang XC, Li X, Rao Z. Structure analysis of the extracellular domain reveals disulfide bond forming-protein properties of Mycobacterium tuberculosis Rv2969c. Protein & Cell. 2013 Aug;4(8):628-40.
64. Sun Y#, Wang X#, Yuan S, Dang M, Li X, Zhang X, Rao Z*. An open conformation determined by a structural switch for 2A protease from coxsackievirus A16, Protein & Cell, 2013, 4: 782-792
65. Wang X#, Peng W#, Ren J#, Hu Z, Xu J, Lou Z, Li X, Yin W, Shen X, Porta C, Walter T.S, Evans G, Axford D, Owen R, Rowlands D.J, Wang J*, Stuart D.I*, Fry E.E*, Rao Z*. A sensor-adaptor mechanism for enterovirus uncoating from structures of EV71, Nature Structural & Molecular Biology, 2012, 19: 424-429
66. Xu J, Peng W, Sun Y, Wang X, Xu Y, Li X, Gao G, Rao Z. Structural study of MCPIP1 N-terminal conserved domain reveals a PIN-like RNase. Nucleic Acids Res. 2012 Aug;40(14):6957-65.
(From Xiangxi Wang, January 30, 2023)