Zhuqiang Zhang, Ph.D, Prof.
-
Member of the Youth Innovation Promotion Association of CAS
National Laboratory of Biomacromolecules, IBP
Research Interests: Understanding of establishment and inheritance of epigenetic modifications
Email: zhangzhuqiang@ibp.ac.cn
Tel: 010-64888213
Address: 15 Datun Road, Chaoyang District, Beijing, 100101, China
Chinese personal homepage
- Biography
1998.09 - 2002.07 B.S. B.S., College of Life Sciences, Beijing University, Beijing, China
2002.09 - 2010.07 Ph.D., Physiology, Institute of Zoology, CAS, Beijing, China
2010.08 - 2014.04 Postdoc. National Institute of Biological Sciences (NIBS), Beijing
2014.05 - 2018.12 Associate Professor, Institute of Biophysics, CAS, Beijing
2018.12 - Professor, Institute of Biophysics, CAS, Beijing
- Awards
- Membership in Academies & Societies
- Research Interests
His research interests are focused on the understanding of establishment and inheritance of epigenetic modifications, and novel pathways in gene repression by DNA methylation, using biochemical and epigenomic techniques.
- Grants
- Selected Publications
1. Ming X, Zhu B, and Zhang Z*, Simultaneously measuring the methylation of parent and daughter strands of replicated DNA at the single-molecule level by Hammer-seq. Nature Protocols, 2021. 16(4): p. 2131-2157.
2. Zhao Z#, Zhang Z#, Li J, Dong Q, Xiong J, Li Y, Lan M, Li G, and Zhu B*, Sustained TNF-α stimulation leads to transcriptional memory that greatly enhances signal sensitivity and robustness. eLife, 2020. 9: p. e61965.
3. Ming X#, Zhang Z#, Zou Z, Lv C, Dong Q, He Q, Yi Y, Li Y, Wang H, Zhu B*. Kinetics and mechanisms of mitotic inheritance of DNA methylation and their roles in aging-associated methylome deterioration. Cell Res. 2020
4. Zhang T#, Zhang Z#, Dong Q, Xiong J*, Zhu B*. Histone H3K27 acetylation is dispensable for enhancer activity in mouse embryonic stem cells. Genome Biol. 2020; 21: 45.
5. Zhao Z., Lan M., Li J., Dong Q., Li X., Liu B., Li G., Wang H., Zhang Z.*, and Zhu B.*, The proinflammatory cytokine TNFalpha induces DNA demethylation-dependent and -independent activation of interleukin-32 expression. J Biol Chem, 2019. 294(17): p. 6785-6795.
6. Li Y#, Zhang Z#, Chen J#, Liu W, Lai W, Liu B, Li X, Liu L, Xu S, Dong Q, Wang M, Duan X, Tan J, Zheng Y, Zhang P, Fan G, Wong J, Xu GL, Wang Z, Wang H, Gao S, Zhu B*. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature. 2018;564: 136-140.
7. Dong Q#, Li X, Wang CZ, Xu S, Yuan G, Shao W, Liu B, Zheng Y, Wang H, Lei X, Zhang Z*, Zhu B*. Roles of the CSE1L-mediated nuclear import pathway in epigenetic silencing. Proc Natl Acad Sci U S A. 2018; 115: E4013-E4022.
8. Li X#, Shang E, Dong Q, Li Y, Zhang J, Xu S, Zhao Z, Shao W, Lv C, Zheng Y, Wang H, Lei X, Zhu B*, Zhang Z*. Small molecules capable of activating DNA methylation-repressed genes targeted by the p38 mitogen-activated protein kinase pathway. J Biol Chem. 2018; 293: 7423-7436.
9. Huang C#, Yang F#, Zhang Z#, Zhang J, Cai G, Li L, Zheng Y, Chen S, Xi R*, Zhu B*. Mrg15 stimulates Ash1 H3K36 methyltransferase activity and facilitates Ash1 Trithorax group protein function in Drosophila. Nature Commun. 2017; 8: 1649.
10. Xiong J#, Zhang Z#*, Chen J, Huang H, Xu Y, Ding X, Zheng Y, Nishinakamura R, Xu GL, Wang H, Chen S, Gao S, Zhu B*. Cooperative Action between SALL4A and TET Proteins in Stepwise Oxidation of 5-Methylcytosine. Mol Cell. 2016; 64: 913-925.
11. Liu N.#, Zhang Z.#, Wu H.#,*, Jiang Y., Meng L., Xiong J., Zhao Z., Zhou X., Li J., Li H., Zheng Y., Chen S., Cai T., Gao S., and Zhu B.*, Recognition of H3K9 methylation by GLP is required for efficient establishment of H3K9 methylation, rapid target gene repression, and mouse viability. Genes Dev, 2015. 29(4): p. 379-93.
12. Mao Z.#, Pan L.#, Wang W.#, Sun J., Shan S., Dong Q., Liang X., Dai L., Ding X., Chen S., Zhang Z.*, Zhu B.*, Zhou Z.*, Anp32e, a higher eukaryotic histone chaperone directs preferential recognition for H2A.Z. Cell Res, 2014.24(4): p. 389-99.
13. Huang C.#, Zhang Z.#, Xu M., Li Y., Li Z., Ma Y., Cai T., and Zhu B.*, H3.3-H4 tetramer splitting events feature cell-type specific enhancers. PLoS Genet, 2013. 9(6): p. e1003558.
(From Zhuqiang Zhang, November 16, 2021)