Home > Faculty

Xiaohong Liu, Ph.D, Prof.

Member of the Youth Innovation Promotion Association of CAS
Chinese Academy of Sciences Key Laboratory of Nucleic Acid Biology, IBP


Research Interests: Chemical biology and Bioinorganic chemistry??


Email: liuxh@ibp.ac.cn


Tel: 010-64852570


Address: 15 Datun Road, Chaoyang District, Beijing, 100101, China


Chinese personal homepage

Biography

2002.09 - 2005.07  Ph.D. in Organic Chemistry, Chemistry Department, Tsinghua University

2005.08 - 2008.04  Postdoctoral researcher, Teikyo University of Science and Technology, Japan

2008.05 -                Institute of Biophysics, CAS

Awards
 
Membership in Academies & Societies
 
Research Interests

The main interest study is to use small, soluble protein scaffold, and the genetic incorporation of unnatural amino acid to design easy-to-characterize, easy-to-produce, and easy-to-optimize metalloenzymes which catalyze these important reactions with equal or greater efficiency/selectivity than that of the natural systems. A series of studies of themetalloenzymes analog has been studied based on the genetic encodingtechnology. For the first time we have successfully designed a functional cytochrome c oxidase model that catalyzes selective and efficient oxygen reduction to water with the 18 kD myoglobin. Second, through the incorporation of metal-chelating amino acids into green fluorescent protein, photoinduced electron transfer was shown to occur within one nanosecond in a distance dependent manner. Such compounds can be used as power tools for studying of PET and using of biological components to achieve efficient and controllable light-induced charge separation.

Grants
 
Selected Publications

1. Wang XY#, Liu DS#, Shen L#, Li FF#, Li YZ, Yang LY, Xu TD, Tao HC, Yao DQ, Wu LJ, Hirata K, Bohn LM, Makriyannis A, Liu XH, Hua T*, Liu ZJ*, and Wang JY*. A Genetically Encoded F-19 NMR Probe Reveals the Allosteric Modulation Mechanism of Cannabinoid Receptor 1. J. Am. Chem. Soc. 2021, 143, 40, 16320-16325. DOI: 10.1021/jacs.1c06847

2. Zheng DD#, Tao M#, Yu LJ#, Liu XH*, Xia AD*, Wang JY*. Ultrafast Photoinduced Electron Transfer in a Photosensitizer Protein. CCS Chem. 2021, 3, 1580-1586. DOI: 10.31635/ccschem.021.202100823

3. Han MJ#, He QT#, Yang MY#, Chen C, Yao YR, Liu XH, Wang YC, Zhu ZL, Zhu KK, Qu CX, Yang F, Hu C, Guo XZ, Zhang DW, Chen CL*, Sun JP* and Wang JY*. Single-molecule FRET and conformational analysis of beta-arrestin-1 through genetic code expansion and Se-Click reaction. Chemical Science. 2021, DOI: 10.1039/D1SC02653D

4. Kang FY #, Yu L#, Xia Y#, Yu ML, Xia L, Wang YC, Yang L, Wang TY, Gong WM, Tian CL*, Liu XH*, and Wang JY *. Rational Design of a Miniature Photocatalytic CO2-Reducing Enzyme. ACS Catal. 2021, 11, 9, 5628-5635. DOI: 10.1021/acscatal.1c00287

5. Fu Y#, Huang J#, Wu YZ *, Liu XH*, Zhong FR*, and Wang JY*. Biocatalytic Cross-Coupling of Aryl Halides with a Genetically Engineered Photosensitizer Artificial Dehalogenase. J. Am. Chem. Soc. 2021, 143, 2, 617-622. DOI: 10.1021/jacs.0c10882

6. Wang L#, Zhang J #, Han MJ#, Zhang L#, Chen C#, Huang AP#, Xie RP, Wang GS, Zhu JR, Wang YC, Liu XH*, Zhuang W*, Li YL*, Wang JY*. A Genetically Encoded Two-Dimensional Infrared Probe for Enzyme Active-Site Dynamics. Angew Chem Int Ed Engl. 2021, 60, 11143 -11147. DOI: https://doi.org/10.1002/anie.202016880

7. Hu C, Liu X, Wang J*. Electrostatics affect the glow. Science. 2020, 367(6473):26. DOI: 10.1126/science.aba0571.

8. Zheng DD, Zhang Y, Liu XH, Wang J*. Coupling natural systems with synthetic chemistry for light-driven enzymatic biocatalysis. Photosynth Res. 2019, doi.org/10.1007/s11120-019-00660-7

9. Yu Y#, Liu XH#, Wang J*. Expansion of Redox Chemistry in Designer Metalloenzymes. AccChem Res. doi: 10.1021/acs.accounts.8b00627. [Epub ahead of print]

10. Liu XH#, Kang F#, Hu C#, Wang L, Xu Z, Zheng D, Gong W, Lu Y, Ma Y, Wang J*. A genetically encoded photosensitizer protein facilitates the rational design of a miniature photocatalytic CO2-reducing enzyme. Nat Chem. 2018, 10 (12):1201-1206. doi: 10.1038/s41557-018-0150-4.

11. Mu Z, Zou Z, Yang Y, Wang W, Xu Y, Huang J, Cai R, Liu Y, Mo Y, Wang B, Dang Y, Li Y, Liu Y, Jiang Y, Tan Q, Liu XH, Hu C, Li H, Wei S, Lou C, Yu Y, Wang J*. A genetically engineered Escherichia coli that senses and degrades tetracycline antibiotic residue. Synth SystBiotechnol. 2018, 3(3):196-203. doi: 10.1016/j.synbio.2018.05.001.

12. Wang L#, Chen X#, Guo X#, Li J, Liu Q, Kang F, Wang X, Hu C, Liu H, Gong W, Zhuang W, Liu XH*, Wang J*. Significant expansion and red-shifting of fluorescent protein chromophore determined through computational design and genetic code expansion. Biophys Rep. 2018, 4(5):273-285. doi: 10.1007/s41048-018-0073-z.

13. Yu Y#, Cui C#, Liu XH#, Petrik ID, Wang J*, Lu Y*. A Designed Metalloenzyme Achieving the Catalytic Rate of a Native Enzyme. J Am Chem Soc. 2015, 137(36):11570-3. doi: 10.1021/jacs.5b07119.

14. Yu Y, Hu C, Liu XH, Wang J*. Synthetic Model of the Oxygen-Evolving Center: Photosystem II under the Spotlight. Chembiochem. 2015, 16(14):1981-3. doi: 10.1002/cbic.201500302.

15. Lv X#, Yu Y#, Zhou M, Hu C, Gao F, Li J, Liu XH, Deng K, Zheng P, Gong W, Xia A*, Wang J*. Ultrafast photoinduced electron transfer in green fluorescent protein bearing a genetically encoded electron acceptor. J Am Chem Soc. 2015, 137(23):7270-3. doi: 10.1021/jacs.5b03652.

16. Yang Y#, Zhou Q#, Wang L#, Liu XH, Zhang W, Hu M, Dong J, Li J, Xiaoxuan L, Ouyang H, Li H, Gao F, Gong W, Lu Y*, Wang J*. Significant Improvement of Oxidase Activity through the Genetic Incorporation of a Redox-active Unnatural Amino Acid. Chem Sci. 2015, 6(7):3881-3885. doi: 10.1039/C5SC01126D

17. X.H. Liu, L Jiang1, J Li, L Wang, Y Yu, Q Zhou, X Lv, W Gong, Y Lu, JY Wang. Significant Expansion of Fluorescent Protein Sensing Ability through the Genetic Incorporation of Superior Photo-Induced Electron-Transfer Quenchers. J. Am. Chem. Soc. 2014 Sep, 136, 13094-13097.

18. X.H. Liu, J.S. Li C. Hu, Q. Zhou, W. Zhang, M.R. Hu, J.Z. Zhou, J.Y. Wang. Significant Expansion of the Fluorescent Protein Chromophore through the Genetic Incorporation of a Metal-chelating Unnatural Amino Acid. Angew Chem Int Ed Engl. 2013, 52, 4805-9 (VIP and Back Cover Article)

19. X.H. Liu, J.S. Li1, J.S. Dong, C. Hu, W.M. Gong, and J.Y. Wang.Genetic Incorporation of a Metal Chelating Amino Acid as a Probe for Protein Electron Transfer. Angew Chem Int Ed Engl. 2012 Oct 8;51(41):10261-5 (Hot Paper, Back Cover Article, recommended by F1000 biology)

20. X.H. Liu, Y. Yu1, C. Hu, W. Zhang, Y. Lu, and J.Y. Wang. Significant Increase of Oxidase Activity through the Genetic Incorporation of a Tyrosine-Histidine Cross-Link in a Myoglobin Model of Heme-Copper Oxidase. Angew Chem Intl Ed, 2012, 51 (18), 4312-4316 (Frontispiece, News of the Week, Chemical and Engineering News)

21. X.H.Liu, T. Yamaguchi, M, Saneyoshi et al. Telomerase inhibition by 3'-Azido-2',3'-dideoxynucleoside 5'-triphosphates inhibit telomerase activity in vitro, and the corresponding nucleosides cause telomere shortening in human HL60 cells. Nucleic Acid Research2007, 35(21), 7140-7149

 

(From Xiaohong Liu, November 2, 2021)

 

Contact Us

Tel: 010-64889872

E-Mail: webadmin@ibp.ac.cn

Address: No 15 Datun Road, Chaoyang District, Beijing

Postcode: 100101