Home > Resources > Latest Important Articles

Mechanistic Studies of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis Using a Tyrosine Analogue, 2-Amino-3-(4-hydroxy-3-(methoxyl)..., ACS Catal, 07 Dec 2018

Updated: 2018-12-07

ACS Catalysis, 07 December, 2018, DOI: http://dx.doi.org/10.1021/acscatal.8b03903

 

Mechanistic Studies of a Nonheme Iron Enzyme OvoA in Ovothiol Biosynthesis Using a Tyrosine Analogue, 2-Amino-3-(4-hydroxy-3-(methoxyl) phenyl) Propanoic Acid (MeOTyr)

 

Li Chen, Nathchar Naowarojna, Bin Chen, Meiling Xu, Melissa Quill, Jiangyun Wang, Zixin Deng, Changming Zhao, and Pinghua Liu

 

Abstract

 

Ovothiols are thiol-histidines that play important roles in protecting cells against oxidative stresses. Because of challenges faced in their chemical synthesis, biosynthesis provides an alternative option. In ovothiol biosynthesis, a nonheme iron enzyme (OvoA) catalyzes a four-electron oxidative coupling between l-His and l-Cys. There are debates in the literature over whether oxidative C–S bond formation or sulfur oxidation is the first half of OvoA-catalysis. In this report, by incorporating a tyrosine analogue, 2-amino-3-(4-hydroxy-3-(methoxyl) phenyl) propanoic acid (MeOTyr), via an amber-suppressor method, we modulated the rate-limiting steps of OvoA-catalysis and observed an inverse deuterium KIE for [U-2H5]-His. In conjunction with the reported quantum mechanics/molecular mechanics (QM/MM) studies, our results suggest that Y417 plays redox roles in OvoA-catalysis and imply that oxidative C–S bond formation is most likely the first half of the OvoA-catalysis.

 

Article link:https://pubs.acs.org.ccindex.cn/doi/10.1021/acscatal.8b03903

 

 

Contact Us

Tel: 010-64889872

E-Mail: webadmin@ibp.ac.cn

Address: No 15 Datun Road, Chaoyang District, Beijing

Postcode: 100101